欧拉筛筛出最小素因数

本文深入探讨了Codeforces教育轮次89中的D题“TwoDivisors”。通过分解质因数,提出了一种有效的解题策略,即随机将质因数分为两组,其乘积与原数互素。文章提供了详细的数学证明,并附带了AC代码实现。

这个是个板子题。

Educational Codeforces Round 89D. Two Divisors

题目链接

https://codeforc.es/contest/1366/problem/D

题意

找到a的两个因数,使得两个因数的和与原数a互素。一共2e5个a要弄。

吐槽

这道题一看就是个构造题。挺难的。我开始觉得自己找到了方法,后来被队长叉掉了。难就难在很难想到构造的方法。但是想到了就很简单了。场上不少人过掉了,但我不会。赛后群里讨论我的想法被发现是个假算法,其他人也都不太会。完了看看官方题解恍然大悟。

题解

画log的时间把a分解质因数了,如果只有一个质因数,那肯定不行。如果有多个,那么把这些质因数随便分成非空的两组,每组乘积就是答案。为什么是这样呢?

  • 证明:
    • d 1 = p 1 ⋅ p 2 ⋅ . . . ⋅ p x d 2 = p x + 1 ⋅ p x + 2 ⋅ . . . ⋅ p n d_1=p_1·p_2·...·p_x\\d_2=p_{x+1}·p_{x+2}·...·p_n d1=p1p2...pxd2=px+1px+2...pn
    • 对于任何一个质因数 p i p_i pi,它一定只被 d 1 d 2 d_1d_2 d1d2其中之一整除,所以一定不会被 d 1 + d 2 d_1+d_2 d1+d2整除。所以 d 1 + d 2 d_1+d_2 d1+d2和a不可能有公约数。
    • 如果有的话,一定是某个 p i p_i pi,而任意一个 p i p_i pi都不可能整除 d 1 + d 2 d_1+d_2 d1+d2,所以互素。

这样就很好做了。然而我居然没想到。。。

AC代码(欧拉筛板子)

#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
const int NN=1e7+10;
int prime[NN];
int visit[NN];
int minDiv[NN];
const int nn=5e5+10;
int d1[nn],d2[nn];
void Prime(int n){
    memset(visit,0,sizeof(visit));
    for (int i = 2;i <= n; i++) {
        if (!visit[i]) {
            prime[++prime[0]]=i;
            minDiv[i]=i;
        }
        for (int j = 1; j <=prime[0] && i*prime[j] <=n; j++) {
            visit[i*prime[j]] = 1;
            minDiv[i*prime[j]]=prime[j];
            if (i % prime[j] == 0) {
                break;
            }
        }
    }
}
int main(){
	Prime(1e7);
	int n;scanf("%d",&n);
	for(int i=1;i<=n;i++){
		int x;
		scanf("%d",&x);
		int xx=1;
		while(x>1){
			if(xx%minDiv[x]){
				xx*=minDiv[x];
			}
			x/=minDiv[x];
		}
		int cd1=minDiv[xx];
		int cd2=xx/cd1;
		if(cd2%cd1==0||cd1%cd2==0){
			d1[i]=-1;
			d2[i]=-1;
		}
		else{
			d1[i]=cd1;
			d2[i]=cd2;
		}
	}
	for(int i=1;i<=n;i++){
		printf("%d ",d1[i]);
	}printf("\n");
		for(int i=1;i<=n;i++){
		printf("%d ",d2[i]);
	}printf("\n");
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值