哈夫曼树

问题描述

 

给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。在这里,我们给出哈夫曼树的构造过程如下   给出一数{qi}={q0, q1, …, qn-1},用这数构造哈夫曼树的过程: 1. 找到{qi}中最小的两个数然后将其删除再将其和加入到{qi},设为qaqb,将qaqb从{qi}中删除掉,然后将它们的和加入到{qi}中。这个过程的浪费的时间记为qa + qb 2. 重复步骤1,直到{qi}中只剩下一个数。   在上面的操作过程中,把所有浪费的时间相加,就得到了构造哈夫曼树的总时间   本题任务:对于给定的一个数列,现在请你求出用该数列构造哈夫曼树的总时间   例如,对于数列{qi}={ 2,3,5,8,9},哈夫曼树的构造过程如下:

1.找到2,3。将其删除后再将和5加入,得到{5,5,8,9}。该过程所浪费时间为5

2.找到5,5。将其删除后再将和10加入,得到{8,9,10}。该过程所浪费时间为10

3.找到8,9。将其删除后再将和17加入,得到{10,17}。该过程所浪费时间为17

4.找到10,17。将其删除后再将和27加入,得到{27}。该过程所浪费时间为27

5. 现在,数列中只剩下一个数27,构造哈夫曼树的过程结束,所用时间为5+10+17+27=59。

输入

 

输入的第一行包含一个正整数nn<=100)。 接下来是n个正整数,表示q0, q1, …, qn-1,每个数不超过1000。

输出

 

输出用数列{qi}构造哈夫曼树的总时间

输入范例

 

5 5 3 8 2 9

输出范例

 

59



AC代码:

#include<stdio.h>
void sort(int b[],int n)
{
    int i;
    int j;
    int t;
    for(i=0;i<n;i++){
        for(j=i+1;j<n;j++){
            if(b[i]>b[j]){
                t=b[i];
                b[i]=b[j];
                b[j]=t;
            }
        }
    }
}
int main()
{
    int a[101];
    int i;
    int n;
    int time;
    while(scanf("%d",&n)!=EOF){
        time=0;
        for(i=0;i<n;i++)
            scanf("%d",&a[i]);
        sort(a,n);
        for(i=1;i<n;i++){
            time=time+a[i]+a[i-1];
            a[i]=a[i]+a[i-1];
            a[i-1]=0;
            sort(a,n);
        }
        printf("%d\n",time);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值