机器学习
文章平均质量分 81
SIGAI_csdn
全方位覆盖AI经典算法与工业应用,紧跟业界最新趋势,让你始终站在技术最前沿。
展开
-
《机器学习-原理、算法与应用》出版了
为什么要写本书?本书的前身为《机器学习与应用》,雷明著,清华大学出版社。在第一版的基础上做了大幅度优化,并经过反复校对,最终形成此书。由于之前是第一次写书,缺乏经验,导致了书的内容过多,里面存在大量开源库代码占据篇幅。这一版改进了这些问题,且增加了不少新的内容,更为系统和全面,品质也得到了不小的提升。SIGAI微信公众号自去年4月份发布第一篇文章“机器学习-波澜壮阔40年”起,到今天为止,已...原创 2019-11-07 14:56:49 · 7120 阅读 · 5 评论 -
集成学习综述-从决策树到XGBoost
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源在之前缅怀金大侠的文章“永远的金大侠-人工智能的江湖”中提到:集成学习是机器学习中一种特殊的存在,自有其深厚而朴实的武功哲学,能化腐朽为神奇,变弱学习为强学习,虽不及武当和少林那样内力与功底深厚。其门下两个主要分支-...原创 2018-11-27 12:05:41 · 1616 阅读 · 0 评论 -
时空建模新文解读:用于高效视频理解的TSM
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源接着之前的《浅谈动作识别TSN,TRN,ECO》,来谈谈最近 MIT和IBM Watson 的新文 Temporal Shift Module(TSM)[1]。Something-SomethingV1...原创 2018-11-28 15:50:06 · 3854 阅读 · 2 评论 -
从0到1:神经网络实现图像识别(上)
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源纸上得来终觉浅,绝知此事要躬行。“神经网络”是“机器学习”的利器之一,常用算法在TensorFlow、MXNet计算框架上,有很好的支持。为了更好的理解与使用这件利器,我们可以不借助计算框架,从零开始,一步步...原创 2018-12-05 16:14:36 · 5750 阅读 · 2 评论 -
从0到1:神经网络实现图像识别(中)
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源”. . . we may have knowledge of the past and cannot control it; we may control the future but have no knowl...原创 2018-12-12 14:53:55 · 4797 阅读 · 1 评论 -
视频理解 S3D,I3D-GCN,SlowFastNet, LFB
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源接着上次的《活体检测Face anti-spoofing综述》,再来讲讲arXiv上新挂的文章:最近看了下几篇动作识别,视频理解的文章,在这里记下小笔记,简单过一下核心思想,以便后续查阅及拓展使用。文章...原创 2018-12-19 15:24:56 · 7947 阅读 · 0 评论 -
Eager Mode,写在TensorFlow 2.0 到来之前
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源本文主要讲解了在编写基于TensorFlow的应用过程中如何使用Eager Mode。内容主要包括 Eager Mode简介 Eager Mode下的自动求导 在Eager Mode下创建一...原创 2018-12-07 15:37:17 · 1500 阅读 · 1 评论 -
视频语义分割介绍
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源摘要:随着深度学习的发展,图像语义分割任务取得了很大的突破,然而视频语义分割仍然是一个十分具有挑战性的任务,本文将会介绍视频语义分割最近几年顶会上的一些工作。1、基本任务介绍:语义分割任务要求给图像上的每...原创 2018-12-10 14:28:22 · 8787 阅读 · 4 评论 -
2018顶会论文汇编
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源CVPR 2018大会时间:6月18日~22日会议地点:盐湖城,UTAH国际计算机视觉与模式识别会议(Conference on Computer Vision and Pattern Recogniti...原创 2018-12-27 13:59:57 · 6993 阅读 · 0 评论 -
深入浅出对抗性机器学习(AML)
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源针对adversarial machine learning这个问题而言,AI出身的小伙伴们可能认为,这样的工作应该只能看做模型的鲁棒性或泛化能力不够强,但是从安全角度考虑,其实所谓的“安全”概念,是从模型的设计者角...原创 2018-12-17 11:34:08 · 4196 阅读 · 0 评论 -
Large scale GAN training for high fidelity natural image synthesis解读
原创 2018-12-04 10:29:57 · 1393 阅读 · 0 评论 -
双线性汇合(bilinear pooling)在细粒度图像分析及其他领域的进展综述
作者简介:张皓南京大学计算机系机器学习与数据挖掘所(LAMDA)研究方向为计算机视觉和机器学习,特别是视觉识别和深度学习个人主页:goo.gl/N715YT细粒度图像分类旨在同一大类图像的确切子类。由于不同子类之间的视觉差异很小,而且容易受姿势、视角、图像中目标位置等影响,这是一个很有挑战性的任务。因此,类间差异通常比类内差异更小。双线性汇合(bilinear pooli...原创 2018-11-20 09:39:55 · 13865 阅读 · 3 评论 -
活体检测新文by京东金融:利用多帧人脸来预测更精确的深度
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源接着上次的《活体检测Face anti-spoofing综述》,再来讲讲arXiv上新挂的文章:京东金融和中科院联合发表的“Exploiting temporal and depth information...原创 2018-11-21 12:04:05 · 25760 阅读 · 0 评论 -
理解概率密度函数
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源概率密度函数是概率论中的核心概念之一,用于描述连续型随机变量所服从的概率分布。在机器学习中,我们经常对样本向量x的概率分布进行建模,往往是连续型随机变量。很多同学对于概率论中学习的这一抽象概念是模糊的。在今天的文章中...原创 2018-10-31 16:37:41 · 62347 阅读 · 12 评论 -
机器学习与深度学习常见面试题(下)
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源原创声明:本文为SIGAI原创文章,仅供个人学习使用,未经允许,不得转载,不能用于商业目的。1、为什么随机森林能降低方差?随机森林的预测输出值是多课决策树的均值,如果有n个独立同分布的随机变量,它...原创 2018-10-24 17:29:21 · 3663 阅读 · 0 评论 -
目标检测算法中检测框合并策略技术综述
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源物体检测(Object Detection)的任务是找出图像或视频中的感兴趣目标,同时实现输出检测目标的位置和类别,是机器视觉领域的核心问题之一,学术界已有将近二十年的研究历史。随着深度学习技术的火热发展,目标检测算...原创 2018-10-30 11:02:11 · 9505 阅读 · 0 评论 -
永远的金大侠-人工智能的江湖
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源金庸先生已离我们远去,笔者当天在朋友圈看到这一消息时心情非常沉痛。作为在小学时就开始读金庸小说的80后,先生给我们的,不仅仅是一个个鲜活的人物,跌宕起伏的故事情节,正义与侠义,而是一个时代的印记。总想着为先生写点什么...原创 2018-11-02 17:25:07 · 1285 阅读 · 0 评论 -
图像分割技术介绍
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源图像分割(image segmentation)技术是计算机视觉领域的个重要的研究方向,是图像语义理解的重要一环。图像分割是指将图像分成若干具有相似性质的区域的过程,从数学角度来看,图像分割是将图像划分成互不相交的区...原创 2018-11-13 10:39:48 · 23208 阅读 · 0 评论 -
深度强化学习综述(上)
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源人工智能中的很多应用问题需要算法在每个时刻做出决策并执行动作。对于围棋,每一步需要决定在棋盘的哪个位置放置棋子,以最大可能的战胜对手;对于自动驾驶算法,需要根据路况来确定当前的行驶策略以保证安全的行驶到目的地;对于机...原创 2018-11-08 15:52:08 · 10341 阅读 · 2 评论 -
机器学习在信用评分卡中的应用
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源作者简介:张中峰中科院博士毕业,研究方向为信息检索、机器学习;曾任职于百度、亿赞普,有多年计算广告相关的算法研发经验;前融360风控技术副总监,负责线上小额信贷产品的风控算法,包括反欺诈策略及模型、信用评分卡...原创 2018-11-14 17:46:24 · 3260 阅读 · 1 评论 -
编写基于TensorFlow的应用之构建数据pipeline
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源本文主要以MNIST数据集为例介绍TFRecords文件如何制作以及加载使用。所讲内容可以在SIGAI 在线编程功能中的sharedata/intro_to_tf文件夹中可以免费获取。此项功能对所有注册用户免费开放....原创 2018-11-16 18:43:50 · 880 阅读 · 0 评论 -
深度多目标跟踪算法综述
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源导言基于深度学习的算法在图像和视频识别任务中取得了广泛的应用和突破性的进展。从图像分类问题到行人重识别问题,深度学习方法相比传统方法表现出极大的优势。与行人重识别问题紧密相关的是行人的多目标跟踪问题。在多目标...原创 2018-10-23 10:54:33 · 26267 阅读 · 1 评论 -
2018 AI产业界大盘点
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源大事件盘点“1.24——Facebook人工智能部门负责人Yann LeCun宣布卸任Facebook人工智能研究部门(FAIR)的负责人Yann LeCun宣布卸任,之后将担任Facebook首席人工智能科...原创 2018-12-17 16:52:34 · 1741 阅读 · 0 评论 -
基于深度学习的细粒度图像分类综述
SIGAI特约作者卢宪凯上海交通大学在读博士其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源1.简介细粒度图像分类 (Fine-grained image categorization), 又被称作子类别图像分类 (Sub-category rec...原创 2019-01-02 09:49:03 · 7234 阅读 · 0 评论 -
理解隐马尔可夫模型
作者简介:SIGAI人工智能平台全文PDF下载:http://www.sigai.cn/paper_99.html隐马尔可夫模型(Hidden Markov Model,简称HMM)由Baum等人在1966年提出[1],是一种概率图模型,用于解决序列预测问题,可以对序列数据中的上下文信息建模。所谓概率图模型,指用图为相互依赖的一组随机变量进行建模,图的顶点为随机变量,边为变量之间的概率关系。...原创 2019-02-14 23:35:49 · 3636 阅读 · 0 评论 -
哪些成为了经典-引用次数最多的10篇机器学习文献
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源近40年来机器学习领域产生了数以万计的论文,并以每年上万篇的速度增长。但真正能够称为经典、经受住历史检验、能投入实际应用的并不多。本文整理了机器学习历史上出现的经典论文,按照被引用次数对它们进行了排序,分为top10...原创 2019-01-23 16:03:09 · 1952 阅读 · 0 评论 -
2018年国外主要实验室和科研团队成果和动向
2018年国外主要大牛和实验室动向和成果原创 2019-02-15 17:08:08 · 3126 阅读 · 0 评论 -
【论文解读】如何让CNN高效地在移动端运行
尽管最新的高端智能手机有强大的CPU和GPU,但是在移动设备上运行复杂的深度学习模型(例如ImageNet分类模型)仍然十分困难。为了可以将深度网络模型应用于移动设备,本文提出了一个简单且有效的压缩整个CNN模型的方案,称为“one-shot whole network compression”,该方案包括三个步骤:a)利用VBMF(Variational Bayesian Matrix Factorization)选择合适的秩。b)对卷积核做Tucker分解。c)参数微调(fine-tune)恢复准确率。原创 2019-02-22 18:22:59 · 2195 阅读 · 1 评论 -
机器学习中的编码器-解码器结构哲学
机器学习中体现着各种工程和科学上的哲学思想,大的有集成学习,没有免费午餐,奥卡姆剃刀;小的有最大化类间差异、最小化类内差异。对于很多问题,存在着一类通行的解决思路,其中的一个典型代表就是“编码器-解码器”结构。这一看似简单的结构,背后蕴含的工程思想却非常值得我们学习和品味。原创 2019-02-27 17:50:43 · 23746 阅读 · 1 评论 -
论文解读 Receptive Field Block Net for Accurate and Fast Object Detection
论文解读 Receptive Field Block Net for Accurate and FastECCV 2018随着深度神经网络的发展,目前性能最佳的目标检测模型都依赖于深度的CNN主干网,如ResNet-101和Inception,虽然强大的特征表示有利于性能的提升,但却带来高额的计算成本。相反的,一些轻量级的检测模型可以实时的处理检测问题,但随之带来的是精度的牺牲。在这篇论文文中,作者探索了一种替代方案,通过使用人工设计的网络模块(hand-crafted mechanism)原创 2019-03-01 17:39:03 · 4803 阅读 · 2 评论 -
CornerNet: Detecting Objects as Paired Keypoints论文解读
#### 作者简介:SIGAI人工智能平台全文PDF下载:http://sigai.cn/paper_101.html本文提出一种使用单个卷积神经网络的新型物体检测方法: CornerNet.本文通过将目标定义为成对关键点,消除了单阶段检测网络中对anchor box的需要. 除了新颖的网络形式外,本文还介绍了角落池化(corner pooling):一种新的池化方式,它可以帮助网络更好地定位...原创 2019-02-21 11:45:34 · 1985 阅读 · 0 评论 -
论文解读: Quantized Convolutional Neural Networks for Mobile Devices
CNN网络在许多方面发挥着越来越重要的作用,但是CNN模型普遍很大,计算复杂,对硬件的要求很高,这也是限制CNN发展的一个因素。在这篇论文中,作者提出了一个加速和压缩CNN的方法——Quantized CNN,主要思想是对卷积层和全连接层中的权重进行量化,并最小化每层的响应误差。作者也在ILSVRC-12上做了大量的实验,证明对于分类任务在仅损失很小的准确率下,该方法可以达到4-6倍的加速,和15...原创 2019-03-04 18:35:29 · 3008 阅读 · 0 评论 -
CVPR2019目标检测方法进展综述
SIGAI特约作者陈泰红研究方向:机器学习、图像处理目标检测是很多计算机视觉应用的基础,比如实例分割、人体关键点提取、人脸识别等,它结合了目标分类和定位两个任务。现代大多数目标检测器的框架是 two-stage,其中目标检测被定义为一个多任务学习问题:1)区分前景物体框与背景并为它们分配适当的类别标签;2)回归一组系数使得最大化检测框和目标框之间的交并比(IoU)或其它指标。最后,通过一个 ...原创 2019-03-20 14:14:04 · 14263 阅读 · 1 评论 -
基于单目视觉的三维重建算法综述
作者:SIGAI特邀作者陈泰红PDF地址:http://sigai.cn/paper_97.html三维计算机视觉在计算机视觉是偏基础的方向,随着2010年阿凡达在全球热映以来,三维计算机视觉的应用从传统工业领域逐渐走向生活、娱乐、服务等,比如AR/VR,SLAM,自动驾驶等都离不开三维视觉的技术。三维重建包含三个方面,基于SFM的运动恢复结构,基于Deep learning的深度估计和结构...原创 2019-01-28 17:30:25 · 10117 阅读 · 2 评论 -
干货|手把手教你在NCS2上部署yolov3-tiny检测模型
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源获取全文PDF;请查看http://www.tensorinfinity.com/paper_68.html如果说深度学习模型性能的不断提升得益于英伟达GPU的不断发展,那么模型的边缘部署可能就需要借助英特尔的边...原创 2019-01-16 11:22:38 · 7988 阅读 · 8 评论 -
工业界第一手实战经验:深度学习高效网络结构设计
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源SIGAI特约作者mileistone腾讯算法工程师研究方向:物体检测这一年来一直在做高效网络设计的工作,2018年即将结束,是时候写一篇关于高效网络设计的总结。首先看看当前业界几个最...原创 2018-12-24 17:28:54 · 1436 阅读 · 1 评论 -
从安全视角对机器学习的部分思考
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源摘要近几年,机器学习的大规模应用,以及算法的大幅度提升,吸引了学术界、工业界以及国防部门的大量关注。然而,对于机器学习算法本身的局限性,由于其快速的发展也不断的暴露了出来。因此,不论是人工智能领域的学者,还...原创 2019-01-11 14:26:31 · 2756 阅读 · 1 评论 -
视觉SLAM综述
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源什么是视觉SLAMSLAM是“Simultaneous Localization And Mapping”的缩写,可译为同步定位与建图。概率 SLAM 问题 (the probabilistic SLAM ...原创 2019-01-02 13:55:09 · 3976 阅读 · 0 评论 -
【AAAI2019】【CVPR2018】最新 Video-based ReID 论文核心解读---附代码
其它机器学习、深度学习算法的全面系统讲解可以阅读《机器学习-原理、算法与应用》,清华大学出版社,雷明著,由SIGAI公众号作者倾力打造。书的购买链接 书的勘误,优化,源代码资源SIGAI特约作者Fisher Yu@OuluCV在读博士研究方向:情感计算最近看了两篇 Video-based 的 ReID 文章,做下笔记简单对比下:第一篇CVPR2018 [1]:先对...原创 2019-01-07 15:30:38 · 3807 阅读 · 0 评论 -
理解熵和交叉熵
作者简介:SIGAI人工智能平台(www.sigai.cn)本文PDF版下载地址:http://www.sigai.cn/paper_80.htmlXGBoost是当前炙手可热的算法,适合抽象数据的分析问题,在Kaggle等比赛中率获佳绩。市面上虽然有大量介绍XGBoost原理与使用的文章,但少有能清晰透彻的讲清其原理的。本文的目标是对XGBoost的原理进行系统而深入的讲解,帮助大家真正理解...原创 2019-01-19 16:55:27 · 4191 阅读 · 3 评论