此方法虽然AC,但(1)发现题目数据比较弱,(2)无法公式证明算法的正确性,因此解法极大可能存在漏洞,(3)优点是复杂度较低。
根据题意,在草稿纸上模拟发现,当连续长度为X时新增一个就会增加X+1,因此考虑尽可能保留相同的数字会让结果更大。进一步考虑也存在如111100000这类情况,因此考虑可以枚举这个分界点,左边保留相同的数字,右边也保留相同的数字。用前缀和找寻相同数字的最大值。得到如下代码:
#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
ll n,l[50005],r[50005],ans=0;
string s;
int main()
{
ios::sync_with_stdio(0),cin.tie(0);
int i,j;
cin>>n>>s;
for(i=1;i<=n;i++) //前缀和保存0的数量
if(s[i-1]=='0')
l[i]=l[i-1]+1;
else
l[i]=l[i-1];
for(i=n;i>=1;i--) //后缀和保存0的数量
if(s[i-1]=='0')
r[i]=r[i+1]+1;
else
r[i]=r[i+1];
for(i=0;i<=n;i++)
{
ll z0=l[i],z1=i-l[i];
ll r0=r[i+1],r1=n-i-r[i+1];
ll ltMax=max(z0*(z0+1)/2,z1*(z1+1)/2);//左半段选择0或1中较大的
ll rMax=max(r0*(r0+1)/2,r1*(r1+1)/2); //右半段同理
ans=max(ans,ltMax+rMax);
}
cout<<ans;
return 0;
}
上述代码过了大部分数据,仔细考虑,发现简单取0或1最大值并不完善,如1100011这样的数据,显然左边的11应该先计算得到1+2分,然后000得1+2+3分,最后11得到1+2分,总和12最大,而上述代码对边界字符直接忽略了。
因此对这个漏洞进行了修补,只考虑左端连续值即可,无需考虑两端连续值(因为删除后字符串最多划分为三段如1100011,再多段数不如连续?)
新代码先抠掉了字符串(如1100011)左边连续的子串(11),再去计算剩余部分(00011)的最大值值。
#include <bits/stdc++.h>
typedef long long ll;
using namespace std;
ll n,l[5005],r[5005],ans=0; /**< l正向前缀和数组,r反向前缀和数组 */
string s;
int main()
{
ios::sync_with_stdio(0),cin.tie(0);
int i,j;
cin>>n>>s;/**< 处理下前缀和数组 */
for(i=1;i<=n;i++)
if(s[i-1]=='0')
l[i]=l[i-1]+1;
else
l[i]=l[i-1];
for(i=n;i>=1;i--)
if(s[i-1]=='0')
r[i]=r[i+1]+1;
else
r[i]=r[i+1];
i=1;
ll iL1=0,iL0=0;/**< 这里开始,iL1存储左端连续1个数,iL0处理左端连续0个数 */
while(s[i]==s[i-1])
{
if(s[i]=='1')
iL1++;
else
iL0++;
i++;
}
if(iL0) iL0++;
if(iL1) iL1++;/**< 这里结束,统计下开始有多少个连续0和1,处理类似于11000111这样的串 */
for(i=1;i<=n;i++)
{
ll z0=l[i],z1=i-l[i];
ll r0=r[i+1],r1=n-i-r[i+1];
ll lMax,rMax;
if(z0==i||z1==i) /**< 全部是0或1,无需考虑iL1,iL0 */
lMax=1LL*i*(i+1)/2;
else /**< 选择0作为连续,那么要加上开头的iL1,选择1则加上iL0,这种枚举方法一定会在某个位置找到最大值 */
lMax=max(z0*(z0+1)/2+iL1*(iL1+1)/2,z1*(z1+1)/2+iL0*(iL0+1)/2);
rMax=max(r0*(r0+1)/2,r1*(r1+1)/2);
ans=max(ans,lMax+rMax);
}
cout<<ans;
return 0;
}