利用二次导数对函数凹凸性的证明

很多人其实都知道可以利用函数的二次导数来判断函数的凹凸性,但是很多人忘记了怎么来证明的,在这里我来再次证明一下。

求证:若f(x)在(a,b)内连续并且二次可导,若f''(x)>0则函数凹,反之函数凸


前序:

先给出几个定理以及说明。

关于函数凹凸性的说明:

函数f(x)在(a,b)内连续,对于任意的a<x1<x2<b,其中x0=(x1+x2)/2,

若f(x0)<(f(x1)+f(x2))/2,则认为该函数(向上)凹;若f(x0)>(f(x1)+f(x2))/2,则认为函数(向上)凸


给出一个证明过程中需要用到的定理:拉格朗日中值定理

函数f(x)在(a,b)内连续在[a,b]内可导,则至少存在一点e,且a<e<b使得f'(e)=(f(b)-f(a))/(b-a)


下面开始证明我们最初的问题:

任意取f(x)上两点x1,x2使得a<x1<x2<b,令x0=(x2+x1)/2,则x0-x1=x2-x0,令x0-x1=x2-x0=h,则分别在(x1,x1+h)和(x2-h,x2)内应用两次拉格朗日中值定理

f'(e1)=(f(x0)-f(x1))/h  (1)

f'(e2)=(f(x2)-f(x0))/h (2)  

其中e1在(x1,x0)范围内,e2在(x0,x2)范围内

让(1)和(2)先把h乘到左边,然后再相减得到:(f'(e2)-f'(e1))h=f(x2)+f(x1)-2(f(x0))  (3)

然后我们再在(e1,e2)中利用一次拉格朗日中值定理,得到如下:

f'(e2)-f'(e1)=f''(e)(e2-e1)  其中e在(e1,e2)范围内,则由条件f''(e)大于0得到(3)的左边大于0,同样由(3)的右边可以得到

f(x0)=f((x1+x2)/2)<(f(x2)+f(x1))/2,再结合函数凹凸性的定理可以得到原函数为凹,对于凸的证明类似。。就不做证明了


  • 6
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值