Tensorflow笔记

转载于人工智能实践:Tensorflow笔记

基本概念

  • 基于 Tensorflow 的 NN:用张量表示数据,用计算图搭建神经网络,用会话执行计算图,优化线上的权重(参数),得到模型。
  • 张量:张量就是多维数组(列表),用“阶”表示张量的维度。
    0 阶张量称作标量,表示一个单独的数; 举例 S=123
    1 阶张量称作向量,表示一个一维数组; 举例 V=[1,2,3]
    2 阶张量称作矩阵,表示一个二维数组,它可以有 i 行 j 列个元素,每个元素可以用行号和列号共同索引到;
    举例 m=[[1, 2, 3], [4, 5, 6], [7, 8, 9]]
    判断张量是几阶的,就通过张量右边的方括号数,0 个是 0 阶,n 个是 n 阶,张量可以表示 0 阶到 n 阶数组(列表);
    举例 t=[ [ [… ] ] ]为 3 阶。
  • 数据类型:Tensorflow 的数据类型有 tf.float32tf.int32 等。
    例如 Tensorflow 的加法:
import tensorflow as tf       #引入模块 
a = tf.constant([1.0, 2.0])   #定义一个张量等于[1.0,2.0] b = tf.constant([3.0, 4.0])   #定义一个张量等于[3.0,4.0] 
result = a+b                  #实现 a 加 b 的加法 
print(result)                 #打印出结果 

可以打印这样一句话:

Tensor(“add:0”, shape=(2, ), dtype=float32)

意思为 result 是一个名称为 add:0 的张量,shape=(2,)表示一维数组长度为 2,
dtype=float32 表示数据类型为浮点型。

  • 计算图(Graph):搭建神经网络的计算过程,是承载一个或多个计算节点的一张图,只搭建网络,不运算。

  • 神经网络的基本模型是神经元,神经元的基本模型其实就是数学中的乘、加运算。

  • 我们搭建如下的计算图:
    在这里插入图片描述
    x1、x2 表示输入,w1、w2 分别是 x1 到 y 和 x2 到 y 的权重,y=x1*w1+x2*w2。
    我们实现上述计算图:

import tensorflow as tf           #引入模块 
x = tf.constant([[1.0, 2.0]])     #定义一个 2 阶张量等于[[1.0,2.0]] 
w = tf.constant([[3.0], [4.0]])   #定义一个 2 阶张量等于[[3.0],[4.0]] 
y = tf.matmul(x, w)          #实现 xw 矩阵乘法 
print(y)                          #打印出结果 

可以打印出这样一句话:Tensor(“matmul:0”, shape(1,1), dtype=float32),从这里我们可以看出,print 的结果显示 y 是一个张量,只搭建承载计算过程的计算图,并没有进行实际的运算,如果我们想得到运算结果就需要使用到“会话 Session()”。

  • 会话(Session):执行计算图中的节点运算。
    我们用 with 结构实现,语法如下:
with tf.Session() as sess: 
	print sess.run(y) 

对于刚刚所述计算图,我们执行 Session()会话可得到矩阵相乘结果:

import tensorflow as tf           #引入模块 
x = tf.constant([[1.0, 2.0]])     #定义一个 2 阶张量等于[[1.0,2.0]] 
w = tf.constant([[3.0], [4.0]])   #定义一个 2 阶张量等于[[3.0],[4.0]] y = tf.matmul(x, w)               #实现 xw 矩阵乘法 
print(y)                          #打印出结果 with tf.Session() as sess: 
print(sess.run(y))         		  #执行会话并打印出执行后的结果 可以打印出这样的结果: 

打印出的结果为:

Tensor(“matmul:0”, shape(1,1), dtype=float32) 
[[11.]]    

我们可以看到,运行Session()会话前只打印出y 是个张量的提示,运行Session()会话后打印出了 y 的结果 1.03.0 + 2.04.0 = 11.0。

神经网络参数

  • 神经网络的参数:是指神经元线上的权重 w,用变量表示,一般会先随机生成
    这些参数。生成参数的方法是让w 等于tf.Variable,把生成的方式写在括号里。 神经网络中常用的生成随机数/数组的函数有:
tf.random_normal()            生成正态分布随机数 
tf.truncated_normal()         生成去掉过大偏离点的正态分布随机数 
tf.random_uniform()           生成均匀分布随机数 
tf.zeros                      表示生成全 0 数组        
tf.ones                       表示生成全 1 数组       
tf.fill                       表示生成全定值数组     
tf.constant                   表示生成直接给定值的数组    

举例:

  • ① w=tf.Variable(tf.random_normal([2,3],stddev=2, mean=0, seed=1)),表示生成正态分布随机数,形状两行三列,标准差是 2,均值是 0,随机种子是 1。
  • ② w=tf.Variable(tf.Truncated_normal([2,3],stddev=2, mean=0, seed=1)),表示去掉偏离过大的正态分布,也就是如果随机出来的数据偏离平均值超过两个 标准差,这个数据将重新生成。
  • ③ w=random_uniform(shape=7,minval=0,maxval=1,dtype=tf.int32,seed=1),表示从一个均匀分布[minval maxval)中随机采样,注意定义域是左闭右开,即包含 minval,不包含 maxval。
  • ④ 除了生成随机数, 还可以生成常量。tf.zeros([3,2],int32) 表示生成[[0,0],[0,0],[0,0]];tf.ones([3,2],int32)表示生成[[1,1],[1,1],[1,1];
    tf.fill([3,2],6)表示生成[[6,6],[6,6],[6,6]];tf.constant([3,2,1])表示生成[3,2,1]。
    注意:
  • ①随机种子如果去掉每次生成的随机数将不一致。
  • ②如果没有特殊要求标准差、均值、随机种子是可以不写的。

神经网络的搭建

当我们知道张量、计算图、会话和参数后,我们可以讨论神经网络的实现过程了。
神经网络的实现过程:

  1. 准备数据集,提取特征,作为输入喂给神经网络(Neural Network,NN)
  2. 搭建 NN 结构,从输入到输出(先搭建计算图,再用会话执行)
    ( NN 前向传播算法 ---------> 计算输出)
  3. 大量特征数据喂给 NN,迭代优化 NN 参数
    ( NN 反向传播算法 ---------> 优化参数训练模型)
  4. 使用训练好的模型进行对未知数据的分类预测

 由此可见,基于神经网络的机器学习主要分为两个过程,即训练过程和使用过程。
 训练过程是第一步、第二步、第三步的循环迭代,使用过程是第四步,一旦参数优化完成就可以固定这些参数,实现特定应用了。

前向传播

  • 前向传播就是搭建模型的计算过程,让模型具有推理能力,可以针对一组输入给出相应的输出。
    假如输入的特征值是:体积 0.7 重量 0.5
    在这里插入图片描述由搭建的神经网络可得,隐藏层节点 a11=x1* w11+x2*w21=0.14+0.15=0.29,同理算得节点 a12=0.32,a13=0.38,最终计算得到输出层 Y=-0.015,这便实现了前向传播过程。

  • 神经网络共有几层(或当前是第几层网络)都是指的计算层,输入不是计算层。

反向传播

  • 反向传播:训练模型参数,在所有参数上用梯度下降,使 NN 模型在训练数据上的损失函数最小。

  • 损失函数(loss):计算得到的预测值 y 与已知答案 y_的差距。 损失函数的计算有很多方法,均方误差 MSE 是比较常用的方法之一。

  • 均方误差 MSE:求前向传播计算结果与已知答案之差的平方再求平均。
    在这里插入图片描述

  • 反向传播训练方法:以减小 loss 值为优化目标,有梯度下降、momentum 优化器、adam 优化器等优化方法。
    这三种优化方法用 tensorflow 的函数可以表示为:

train_step=tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) 
train_step=tf.train.MomentumOptimizer(learning_rate, momentum).minimize(loss) 
train_step=tf.train.AdamOptimizer(learning_rate).minimize(loss) 

三种优化方法区别如下:

  • ①tf.train.GradientDescentOptimizer()使用随机梯度下降算法,使参数沿着梯度的反方向,即总损失减小的方向移动,实现更新参数。
  • 在这里插入图片描述

参数更新公式是
在这里插入图片描述
其中,?(?)为损失函数,?为参数,?为学习率。

  • ②tf.train.MomentumOptimizer()在更新参数时,利用了超参数,参数更新公式是
    在这里插入图片描述
    其中,?为学习率,超参数为?,?为参数,?(??−1)为损失函数的梯度。
  • ③tf.train.AdamOptimizer()是利用自适应学习率的优化算法,Adam 算法和随机梯度下降算法不同。随机梯度下降算法保持单一的学习率更新所有的参数,学习率在训练过程中并不会改变。而 Adam 算法通过计算梯度的一阶矩估计和二阶矩估计而为不同的参数设计独立的自适应性学习率。
  • 学习率:决定每次参数更新的幅度。
    优化器中都需要一个叫做学习率的参数,使用时,如果学习率选择过大会出现震荡不收敛的情况,如果学习率选择过小,会出现收敛速度慢的情况。我们可以选个比较小的值填入,比如 0.01、0.001。

搭建神经网络的步骤

神经网络的搭建课分四步完成:准备工作、前向传播、反向传播和循环迭代。
1.导入模块,生成模拟数据集;
import
常量定义
生成数据集
2.前向传播:定义输入、参数和输出
x=       y_=
w1=     w2 =
a=       y =
3. 反向传播:定义损失函数、反向传播方法
loss=
train_step=
4. 生成会话,训练 STEPS 轮

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值