Tensorflow手记

本文记录了使用Docker安装TensorFlow的过程,包括如何安装支持GPU的版本,以及遇到的GPU显存不足问题。在安装中,遵循官方指南,通过nvidia-docker启用GPU支持。当遇到GPU1显存不足时,解决方案是切换到GPU2执行。
摘要由CSDN通过智能技术生成

tensorflow的安装

安装tensorflow docker版本很简单,按官网的指南安装GPU支持的docker版本只需要三步

  • 在本地主机上安装 Docker。
  • 要在 Linux 上启用 GPU 支持,请安装 nvidia-docker。
  • 启动 TensorFlow Docker 容器
使用仅支持 CPU 的映像的示例
docker run -it --rm tensorflow/tensorflow \
   python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"
GPU 支持

检查 GPU 是否可用:

lspci | grep -i nvidia

验证 nvidia-docker 安装:

docker run --runtime=nvidia --rm nvidia/cuda nvidia-smi

使用支持 GPU 的映像
下载并运行支持 GPU 的 TensorFlow 映像:

docker run --runtime=nvidia -it --rm tensorflow/tensorflow:latest-gpu \
   python -c "import tensorflow as tf; tf.enable_eager_execution(); print(tf.reduce_sum(tf.random_normal([1000, 1000])))"

可能需要几分钟的时间,然后安装就完成了

遇到的问题

显存不足

报错1
2019-03-12 07:19:15.563496: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2019-03-12 07:19:17.012829: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library libcuda.so.1
2019-03-12 07:19:18.953407: W tensorflow/compiler/xla/service/platform_util.cc:256] unable to create StreamExecutor for CUDA:0: failed initializing StreamExecutor for CUDA device ordinal 0: Internal: failed call to cuDevicePrimaryCtxRetain: CUDA_ERROR_OUT_OF_MEMORY: out of memory; total memory reported: 12788498432
2019-03-12 07:19:18.953905: I tensorflow/compiler/xla/service/service.cc:162] XLA service 0x510ff40 executing computations on platform CUDA. Devices:
2019-03-12 07:19:18.954126: I tensorflow/compiler/xla/service/service.cc:169]   StreamExecutor device (0): TITAN Xp, Compute Capability 6.1
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/local/lib/python2.7
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值