Anolis linux安装nvidia RTX 4060显卡驱动

1、先确定显卡型号,这里是GeForce RTX 4060

lshw -C display
#或者可尝试 lspci -v |grep VGA    
*-display UNCLAIMED       
       description: VGA compatible controller
       product: AD107 [GeForce RTX 4060]
       vendor: NVIDIA Corporation
       physical id: 0
       .......

2、安装前需要先禁用nouveau并重启(安装Nvidia显卡的官方驱动和系统自带的nouveau驱动冲突,两者只能选其一,nouveau属于第三方通用驱动)

#查看是否加载nouveau
lsmod |grep nouveau
#禁用nouveau
vi /etc/modprobe.d/blacklist-nouveau.conf
#加入如下两行
blacklist nouveau
options nouveau modset=0
#更新,并重启,这里也可以使用 update-initramfs -u 重建initramfs
dracut --force
reboot
#再次查看是否禁用成功。若没有输出,则表示禁用成功。
lsmod |grep nouveau

3、安装基础依赖包

yum install -y  gcc gcc-c++ kernel-devel-$(uname -r) kernel-headers-$(uname -r)
yum install -y make vulkan-loader

4、安装显卡驱动(下载地址:https://www.nvidia.cn/geforce/drivers/)
在这里插入图片描述
在这里插入图片描述

运行驱动包

[root@localhost ~]# sh NVIDIA-Linux-x86_64-570.133.07.run

Verifying archive integrity... OK
Uncompressing NVIDIA Accelerated Graphics Driver for Linux-x86_64 570.133.07Extraction failed.
Signal caught, cleaning up

这里解压提取失败,因为安装Anolis时使用了最小安装,很多软件没有安装,运行驱动包时需使用tar,但系统没有找到tar,因此直接报Extraction failed ,解决方法:安装tar(yum install -y tar)安装好tar后,再次运行安装包顺利进入安装界面,一般选NVIDIA Proprietary(性能和兼容性更好但闭源)(MIT/GPL开源,性能稍弱)
在这里插入图片描述
安装期间的交互与选项

WARNING: nvidia-installer was forced to guess the X library path '/usr/lib64' and X module path'/usr/lib64/xorg/modules'; these paths were not queryable from the system.  If X fails to find the NVIDIA X driver module, please install the `pkg-config` utility and the X.Org SDK/development package for yourdistribution and reinstall the driver
选OK

Install NVIDIA's 32-bit compatibility libraries?
选no

The initramfs will likely need to be rebuilt due to the following condition(s):
* Nouveau is present in the initramfs.
Would you like to rebuild the initramfs?
选Rebuild initramfs

Would you like to run the nvidia-xconfig utility to automatically update your X configuration file so that the NVIDIA X driver will be used when you restart X?  Any pre-existing X configuration file will be backed up.  
选择yes

最后提示:
  Your X configuration file has been successfully updated.  Installation of the NVIDIA Accelerated Graphics Driver for Linux-x86_64 (version: 570.133.07) is now complete.


代表安装完成。

验证是否有加载nvidia驱动

[root@localhost ~]# lsmod | grep nvidia
nvidia_drm             94208  0
nvidia_modeset       1531904  1 nvidia_drm
nvidia              89886720  1 nvidia_modeset
drm_kms_helper        262144  1 nvidia_drm
drm                   569344  4 drm_kms_helper,nvidia,nvidia_drm
i2c_core               98304  5 drm_kms_helper,nvidia,i2c_smbus,i2c_i801,drm

用nvidia-smi命令查看GPU信息
在这里插入图片描述
查看显卡驱动driver是否是nvidia

lshw -c video | grep configuration   

在这里插入图片描述

5、安装CUDA
用nvidia-smi 命令查看驱动支持的cuda最高版本
在这里插入图片描述
前往官网下载CUDA:https://developer.nvidia.com/cuda-toolkit-archive
在这里插入图片描述
在这里插入图片描述
打开页面后,可以使用页面下方命令下载和安装

wget https://developer.download.nvidia.com/compute/cuda/12.8.1/local_installers/cuda_12.8.1_570.124.06_linux.runsudo 
sh cuda_12.8.1_570.124.06_linux.run

安装时原因第4步已经安装驱动,所以这里不需要再重新安装驱动(这里版本旧一点)
在这里插入图片描述
安装完成
在这里插入图片描述
把CUDA加入到个人PATH环境变量

vi ~/.bashrc 
export PATH=/usr/local/cuda-12.8/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-12.8/lib64:$LD_LIBRARY_PATH
export CUDA_HOME=/usr/local/cuda-12.8

source ~/.bashrc

检查是否安装了CUDA

ls -l /usr/local | grep cuda

使用命令 nvcc -V 输出cuda版本号则安装成功。

#成功输出
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2025 NVIDIA Corporation
Built on Fri_Feb_21_20:23:50_PST_2025
Cuda compilation tools, release 12.8, V12.8.93
Build cuda_12.8.r12.8/compiler.35583870_0

6、安装cuDNN(需要注册nvidia账号)
下载网址:https://developer.nvidia.com/rdp/cudnn-archive
在这里插入图片描述
上传压缩包到服务器后,解压缩

tar -xvf cudnn-linux-x86_64-8.9.7.29_cuda12-archive.tar.xz
cd cudnn-linux-x86_64-8.9.7.29_cuda12-archive/

cp lib/* /usr/local/cuda-12.8/lib64/
cp include/* /usr/local/cuda-12.8/include/
chmod a+r /usr/local/cuda-12.8/lib64/*
chmod a+r /usr/local/cuda-12.8/include/*

验证cuDNN是否安装成功

cat /usr/local/cuda-12.8/include/cudnn_version.h | grep CUDNN_MAJOR -A 2

在这里插入图片描述
进入/usr/local/cuda-12.8/extras/demo_suite/* 下有一些测试样例程序
deviceQuery会输出CUDA的相关信息,如纹理内存、常量内存、共享内存等

./deviceQuery

./deviceQuery Starting...
 CUDA Device Query (Runtime API)
Detected 1 CUDA Capable device(s)
Device 0: "NVIDIA GeForce RTX 4060"
  CUDA Driver Version / Runtime Version          12.8 / 12.8
  CUDA Capability Major/Minor version number:    8.9
  Total amount of global memory:                 7814 MBytes (8193835008 bytes)
MapSMtoCores for SM 8.9 is undefined.  Default to use 128 Cores/SM
MapSMtoCores for SM 8.9 is undefined.  Default to use 128 Cores/SM
  (24) Multiprocessors, (128) CUDA Cores/MP:     3072 CUDA Cores
  GPU Max Clock rate:                            2550 MHz (2.55 GHz)
  Memory Clock rate:                             8501 Mhz
  Memory Bus Width:                              128-bit
  L2 Cache Size:                                 25165824 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  1536
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 2 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Disabled
  Device supports Unified Addressing (UVA):      Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 1 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 12.8, CUDA Runtime Version = 12.8, NumDevs = 1, Device0 = NVIDIA GeForce RTX 4060
Result = PASS

驱动到此已经安装完毕,下一步就可以安装大模型了

参考文章:
https://blog.csdn.net/u014073556/article/details/145924098
https://openanolis.cn/sig/AI_SIG/doc/721423765456666646

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值