二维数组中的查找
在一个二维数组中,每一行都按照从左到右递增的顺序排序,每一列都按照从上到下递增的顺序排序。请完成一个函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
分析:
假设矩阵为m * n维,采用二分查找的思想,选定右上角的元素top_right和待查值key做比较。
如果key < top_right, 则top_right所在的列肯定没有待查的元素, 待查矩阵可缩小为 m * (n - 1),并将该矩阵的右上角元素赋值给top_right;
如果 key > top_right,则top_right所在的行肯定没有待查的元素,待查矩阵可缩小为(m - 1)* n ,并将该矩阵的右上角元素赋值给top_right;
如果 key = top_right,则在矩阵中查找到待查元素。
循环上面的操作,直到查找到待查元素或者超出边界。算法的时间复杂度为O(m + n)。
代码如下:
//第一个形参为数组指针
bool myFind(int (*arry)[4], int row, int ikey)
{
int i = 0;
int j = 4 - 1;
int top_right = arry[i][j];
while (i <= (row - 1) && j >= 0) //超出矩阵的边界则终止循环
{
if (ikey < top_right)
{
top_right = arry[i][j - 1];
--j;
}
else if (ikey > top_right)
{
top_right = arry[i + 1][j];
++i;
}
else if (ikey == top_right)
{
return true;
}
}
return false;
}