【技巧】简单理解快速幂(求模)

【技巧】简单理解快速幂(求模)



      今天讲了一个特别有用的东西就是快速幂,为了弄懂这个百度了一上午。。。还是没咋明白。。。


      怕忘了就先开个博文记一下代码什么的。。。


      快速幂,就是更快速地计算一个数的次方的方法。传统方法求幂计算,数小了还好,数大了就容易超时。

      这个方法据说大部分比赛都不会超时,灰常地腻害呢~

      具体理论总是太高大上了,还是举栗子好吃,简单又粗暴!

      比如我们来算3的10次幂,把3乘10次脑袋就炸了,怎么算呢,这么算!


                              3*3*3*3*3*3*3*3*3*3…………………………(10个3相乘)

                            =(3*3)*(3*3)*(3*3)*(3*3)*(3*3)…………………②

                            =(3*3)^5

                            =((3*3)*(3*3))^2*(3*3)………………………………………③


      …啥?并没有感觉多好算?废话!人脑算起来当然难算,我们叫电脑来算啊~

      先来看①式,如果要电脑来算,10个3相乘,就要乘9次;对于②式,五个3×3(把3×3看成一个整体)相乘,就要乘4次;对于③,就是两个((3*3)*(3*3))相乘再多乘一个多出来的(3*3),只要乘3次就好了,对于电脑来讲,工作的循环次数越少就越省时间(这个时候我还没学时间复杂度呢,我就先这样理解了╮(╯_╰)╭)。

      这样就总结出来一个公式!


                                                    n^p   (p为偶数时)                                               n^p(p为奇数时)

                                                =(n^2)^(p/2)                                                        =((n^2)^(p/2))*n

                                                =((n^2)^2)^(p/2/2)                                =(((n^2)^2)^(p/2/2))*n

                                                .                                                                                                    .

                                                .                                                                                                    .

                                                .                                                                                                    .

                                                =(n^p)*(1)                                                                =这个没固定公式(因为p每次除2之后奇偶性不固定)

这个公式前提是不管p除多少个2商都是偶数


      而现实中情况更接近p为奇数的那种情况,,对于那种情况,变换也很简单,当p为奇数时,就把前面括号里的一堆东西(记为x)平方掉再乘以(p/2-0.5)(就是去尾法),注意还没完!还要再把去尾丢掉的一个x再乘上,就变成了  原式=(x^2)*(p/2-0.5)*x  当然程序里面如果p是整型变量就不用减去0.5了。


      综合上面的东西,可以得出快速计算a的p次幂的函数代码:


long long QuickPow(long long a,long long p)
{
	long long ans=1;
	while(p)
	{
		if(p%2==1)//当p时奇数时,相当于往后面把那个少乘的x补乘上去
		{
			ans=ans*a;
		}
		p/=2;
		a*=a;
	}
	return ans;
}

          有时候会叫你求a的p次幂除以mod(mod只是一个数)的余数,这时候就要用到同余定理了,同余定理式子是这样的:

      (a*b)除以c的余数=(a除以c所得的余数)×(b除以c所得的余数),即(a*b)%c=(a%c)*(b%c),%是取余符号。


      这样就会得到一个引理:



      SO!

      我们的代码就可以这样写了:


__int64 quickpow(__int64 a,__int64 p,__int64 mod)
{
	__int64 ans=1;
	a=a%mod;
	while(p)
	{
		if(p%2==1)
		{
			ans=ans*a%mod;
		}
		p/=2;
		a=a*a%mod;
	}
	return ans%mod;
}
 

                  只是多往后面对mod取了个余罢了~

           而我们上面的代码,就是当mod=1时的情况。


                                              任务完成!



华丽分割-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=割分丽华


另附上学长给的代码:


//快速幂求模
#include<cstdio>
int quickpow(int n,int m,int mod)
{
	int ans=1,base=n;
	while(m)
	{
		if(m&1)
		{
			ans=(base*ans)%mod;
		}
		base=(base*base)%mod;
		m>>=1;
		printf("ans=%d base=%d m=%d\n",ans,base,m);
	}
	return ans;
}

int main()
{
	int n,m,mod;
	while(~scanf("%d%d%d",&n,&m,&mod))
	{
		printf("%d\n",mod);
		printf("%d\n",quickpow(n,m,mod));
	}
	return 0;
}


       哎?有点不一样!?可以看到他给的函数中判断p(学长的函数中p是m)是不是奇数用了“m&1”,这个是按位与的意思,简单来说就是先把m转换为2进制,然后取最右边那一位,如果是1就说明m是奇数,是0说明m是偶数;还有p/2变成了m>>=1,这就是把二进制的m向右移了一位,把最右边的那一位给挤掉了,现在少了最右边的那一位,其实本质上还是把m给除了个2。。。

唉,果然只有那些写出来让人看不懂的代码才能达到装逼的效果。。。→_→

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值