pytorch小坑:需设置CUDA_HOME环境变量,保证全局CUDA环境一致

详见: https://github.com/pytorch/pytorch/issues/22844
安装和代码中的CUDA_HOME调用函数逻辑不一致,在多CUDA环境中出现bug。
保险的做法是在设置PATH, LD_LIBRARY_PATH等环境变量时顺带把CUDA_HOME也设置了。

windows应该是CUDA_PATH环境变量。

### 配置 CUDA_HOME 环境变量 对于 Windows 和 Linux 用户来说,正确配置 `CUDA_HOME` 环境变量是确保 CUDA 开发顺利的关键一步。 #### 对于 Windows 用户: 当遇到 `CUDA_HOME` 环境变量未被识别的情况时,在系统环境变量中添加 `CUDA_HOME` 变量并将其值设为 CUDA 的安装路径可以解决问题[^1]。如果是在特定的虚拟环境中出现问题,则可以在该环境下通过命令行设置此变量。例如,使用 Conda 虚拟环境可以通过如下方式设定: ```bash conda env config vars set CUDA_HOME="C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.X" ``` 这里 vX.X 表示具体的 CUDA 版本号。完成上述操作后,应当重启终端或激活对应的 conda 环境来使更改生效,并可通过 `echo %CUDA_HOME%` 来验证是否成功设置了这个环境变量。 #### 对于 Linux 用户: Linux 下同样要定义 `CUDA_HOME` 这样的全局环境变量以便让编译工具链找到必要的库文件和头文件位置。一种常见的做法就是在 `/etc/profile` 文件里追加相应的导出语句,比如针对某个具体版本的 CUDA 安装目录而言: ```bash export CUDA_HOME=/usr/local/cuda-X.Y export PATH=$PATH:$CUDA_HOME/bin export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDA_HOME/lib64 ``` 其中 X.Y 是指代实际安装的那个 CUDA 版本号码。这样做之后记得要 source 一次 profile 或者重新登录才能使得新加入的内容起作用[^3]。 另外值得注意的是,有时即使已经完成了以上步骤,但如果使用的 Python 库(如 PyTorch)版本与当前系统的 CUDA 不匹配的话也可能引发类似的错误提示;因此建议确认两者之间的兼容性关系后再做进一步排查。
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值