Keras
文章平均质量分 59
silent56_th
大学生一枚,对机器学习、图像处理感兴趣,偶尔也会刷刷leetcode或者hihocoder。希望在这里可以和大家多多交流,互相学习。
展开
-
Keras设定GPU使用内存大小(Tensorflow backend)
纯粹搬运工,接受英语的请看原网址:Keras Tensorflow backend automatically allocates all GPU memory。通过设置Keras的Tensorflow后端的全局变量达到。import osimport tensorflow as tfimport keras.backend.tensorflow_backend as KTFdef get_se翻译 2017-03-03 23:22:44 · 15383 阅读 · 0 评论 -
CS20si课程笔记1:Tensorflow Introduction
虽然一直使用Tensorflow+Keras,但是没有一个关于Tensorflow的整体框架理解,所以趁着暑假刷一下Stanford刚开的关于Tensorflow的课程CS20si。 关于课程的slides, notes以及各种介绍请参照课程官网以及Github Repo。须注明的是课程是一门新课,而且Tensorflow也没有稳定下来的API,所以应该只是当前时刻一个较棒的分享,并不具有太多的权原创 2017-07-10 16:01:42 · 3426 阅读 · 2 评论 -
Keras以及Tensorflow强制使用CPU
Keras如果是使用Theano后端的话,应该是自动不使用GPU只是用CPU的,启动GPU使用Theano内部命令即可。 对于Tensorflow后端的Keras以及Tensorflow会自动使用可见的GPU,而我需要其必须只运行在CPU上。网上查到三种方法,最后一种方法对我有用,但也对三种都做如下记录:使用tensorflow的 with tf.device('/cpu:0'):函数。简单操作原创 2017-05-22 17:59:31 · 40747 阅读 · 7 评论 -
keras的EarlyStopping callbacks的使用与技巧
本文是笔者使用EarlyStopping的心得,很多是笔者自己的思考,欢迎大家讨论指教。 具体EarlyStop的使用请参考官方文档和源代码。EarlyStopping是什么EarlyStopping是Callbacks的一种,callbacks用于指定在每个epoch开始和结束的时候进行哪种特定操作。Callbacks中有一些设置好的接口,可以直接使用,如’acc’,’val_acc’,’los原创 2017-06-02 16:55:10 · 51156 阅读 · 13 评论 -
在tensorflow中使用keras作为高层接口
最近从keras转战tensorflow,原先的代码又不想重写,幸好keras代码可以在tensorflow中使用。详情请参考将Keras作为tensorflow的精简接口。 简单应用的话,就是把keras当作tf.layers里面的层来用,placeholder等价于Keras.Input,然后基本和keras里面使用model模块的时候构建方式相同。最后的model也可以使用的,但是我就是想要原创 2017-04-24 17:17:10 · 6789 阅读 · 0 评论 -
Keras使用tensorflow代码
几乎所有相关代码都是backend里面,tensorflow与theano共同拥有的函数在backend.common里面,这部分代码无论使用任何backend都可以运行。其中tensorflow相关的位于backend.tensorflow_backend。 如果使用tensorflow backend,几乎所有的Keras.tensor都可以使用tensorflow内部的Operator。原创 2017-03-15 20:19:48 · 3464 阅读 · 0 评论 -
Keras求取任意两个节点之间的导数
使用backend里面的gradient函数。此函数就是对于tensorflow里面的gradient函数的包装,输入输出都是tensor,可以把此函数想象为Operator。详情请参考backend-functions,tensorflow_backend.py,Gradient Computation。原创 2017-03-12 22:34:05 · 2370 阅读 · 0 评论 -
Keras设置以及获取权重
layer的两个函数:get_weights(), set_weights(weights)。 详情请参考about-keras-layers。翻译 2017-03-12 22:26:00 · 24281 阅读 · 5 评论 -
Keras解决OOM超内存问题
如果在Keras内部多次使用同一个Model,例如在不同的数据集上训练同一个模型进而得到结果,会存在内存泄露的问题。在运行几次循环之后,就会报错OOM。解决方法是在每个代码后面接clear_session()函数,显示的关闭TFGraph,再重启。详情参考 https://keras.io/backend/#backend-functions。from keras import backend as翻译 2017-03-03 23:31:34 · 21121 阅读 · 19 评论 -
Keras指定使用GPU
使用CUDA_VISIBLE_DEVICES.CUDA_VISIBLE_DEVICES=1 python train.py转载 2017-03-03 23:26:59 · 15228 阅读 · 0 评论 -
Keras之LSTM源码阅读笔记
这里目前为止只是博主阅读Keras中LSTM源码的草稿笔记,内容不全,没有清晰的逻辑,只是堆砌个人想法。参考文献: 1. keras的官方相关文档 2. LSTM原论文 3. keras的RNN源码1. 接口研究1.1. Recurrent接口Recurrent是LSTM的父类(实际是通过SimpleRNN间接继承),定义所有RNNs的统一接口。1.1.1. implementation:im原创 2017-06-18 23:45:22 · 8392 阅读 · 3 评论