silver
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
44、隐私敏感型消费者激励方案研究
本文研究了零售商在考虑消费者隐私敏感度情况下的激励方案,提出基于马尔可夫决策过程(MDP)的系统模型,通过构建消费者两状态(正常与警觉)的演化机制,设计了以最小化长期折扣成本为目标的最优平稳策略。研究发现,存在一个关键阈值τ,决定了零售商应提供高隐私风险(HP)或低隐私风险(LP)优惠券的时机,该阈值受转移概率、成本结构和折扣因子等影响。文章进一步扩展至多级警觉状态和优惠券依赖转移的实际场景,并通过对比贪心与懒惰策略验证了阈值策略的优越性。研究成果为零售业精准营销与客户关系管理提供了理论支持与实践指导。原创 2025-10-23 02:57:52 · 26 阅读 · 0 评论 -
43、博弈论中的概率分布支付与隐私敏感消费者激励方案
本文探讨了博弈论中基于概率分布支付的博弈模型及其在风险管理中的应用,以及针对隐私敏感消费者的激励方案。前者通过引入排序关系和超实数拓扑结构,扩展传统博弈支付形式,并讨论其均衡存在性与计算挑战;后者构建POMDP模型,利用阈值策略优化零售商优惠券发放,在保护隐私的同时降低折扣成本。文章还提出了未来研究方向,包括随机变量比较、极端值建模与动态策略调整等。原创 2025-10-22 10:31:40 · 26 阅读 · 0 评论 -
42、博弈论与安全:不确定性下的决策新视角
本文探讨了博弈论在安全领域中的应用,提出了一种引入概率分布作为回报的新型博弈模型,以应对传统理论在处理不确定性方面的局限。通过构建基于矩序列和超实数的总排序关系,文章实现了对随机变量的有效比较,并结合截断方法修正反直觉结果。案例分析涵盖网络攻防、风险管理和资源分配,展示了博弈论在多主体交互与复杂决策中的优势。同时,文章也指出了模型复杂性、数据获取和不确定性处理等挑战,并展望了融合多学科知识、考虑现实因素及在物联网、区块链等新兴领域的应用前景。原创 2025-10-21 14:56:54 · 24 阅读 · 0 评论 -
41、博弈论与安全:近期历史与未来方向
本文综述了博弈论在安全领域的应用,重点探讨了攻击者-防御者博弈(ADGs)和相互依赖安全博弈(ISGs)两类主要模型。ADGs强调攻击者与防御者的战略互动,适用于恐怖袭击防范、网络入侵检测等场景;ISGs则关注多个防御者之间的相互依赖关系及其带来的正负外部性,揭示了安全投资不足的成因。文章还介绍了其他相关博弈类型,并指出未来研究方向,包括放松理性假设、结合战略对手与外部性建模,以及对多参与者攻击链的细化分析,旨在为网络安全决策提供更有效的理论支持。原创 2025-10-20 14:35:03 · 35 阅读 · 0 评论 -
40、服务提供商与客户端间的安全信号博弈及博弈论在安全领域的应用
本文探讨了服务提供商与客户端之间的安全信号博弈模型,基于博弈论分析了在云环境中SP是否被攻击的情况下双方的策略互动。通过构建信号博弈框架,研究了自然选择、信号发送、客户端决策及收益计算等环节,并详细阐述了纯策略下的分离均衡与池化均衡条件。同时,文章回顾了博弈论在安全领域的应用发展历程,提出了未来研究方向,包括放松理性假设、建模战略攻击者与相互依赖关系等,旨在为复杂网络环境中的安全决策提供理论支持。原创 2025-10-19 16:37:51 · 29 阅读 · 0 评论 -
39、无故障安全博弈中的遗传近似与服务提供商-客户端安全信号博弈
本文探讨了自适应遗传算法(AGA)在无故障安全博弈中的攻击树评估应用,对比了AGA与传统遗传算法(GA)在种群规模、分析能力和执行效率方面的差异,展示了AGA在处理大规模攻击树时的显著优势。同时,文章构建了服务提供商-客户端安全信号博弈模型,结合攻击者-防御者(AD)博弈与客户端的不完全信息决策,提出了一种扩展形式的信号博弈框架,并通过纳什均衡分析帮助客户端在存在攻击威胁的环境中做出最优信任决策。研究成果适用于云计算、无人机、认知无线电和无线传感器网络等场景的安全机制设计。原创 2025-10-18 14:28:09 · 16 阅读 · 0 评论 -
38、云翻转:网络物理信号博弈与无故障安全博弈的遗传近似
本文探讨了云控制在无人车辆导航中的网络物理信号博弈,并提出了无故障安全博弈中基于遗传算法的近似求解方法。通过建模信号博弈的分离与合并均衡,分析了云中攻击者与防御者的互动机制。针对无故障博弈中对手预期效用评估的NP完全问题,采用遗传算法进行高效逼近,设计了个体生成、均匀交叉与变异策略。实验表明,该算法在合理时间内可处理多达800个叶子的攻击树,显著优于传统O(n^4)复杂度的ApproxTree模型。研究还分析了种群大小、交叉率和变异率对算法性能的影响,为安全博弈的在线求解提供了可行路径。原创 2025-10-17 09:45:29 · 23 阅读 · 0 评论 -
37、应对高级持续威胁的云控制安全框架
本文提出了一种应对高级持续威胁(APTs)的云控制安全框架(GCC),通过耦合FlipIt游戏与信号博弈,构建了攻击者、云管理员和云连接设备三方的交互模型。引入全新的‘格式塔均衡’概念,解决两个动态博弈之间的相互依赖问题,实现对云指令信任决策的优化。以无人车辆控制为例,展示了该框架在动态系统中的应用,并分析了其在智能交通、无人机配送和智能家居等场景的拓展潜力,为云环境下网络物理系统的安全保障提供了创新性解决方案。原创 2025-10-16 15:41:36 · 18 阅读 · 0 评论 -
36、云控制博弈:理论与应用解析
本文深入解析了云控制博弈(GCC)的理论框架与实际应用,涵盖信号博弈和FlipIt博弈的基础概念、均衡分析及其在自动驾驶场景中的应用。通过定义完美贝叶斯均衡与纳什均衡,并引入格式塔均衡作为整体系统均衡的求解方法,文章揭示了攻击者、防御者与接收者之间的策略互动机制。结合具体参数示例与动态模型,展示了如何通过信任收益和效用比确定均衡状态,并提供防御、攻击与接收策略建议。研究表明,云控制博弈为保障云端交互安全、优化资源利用及支持智能决策提供了有效的理论支撑。原创 2025-10-15 16:27:37 · 41 阅读 · 0 评论 -
35、理性证明与云安全博弈:理论与应用解析
本文探讨了理性证明与云安全博弈的理论基础及其应用。在理性证明方面,提出增强版定义和协议,解决传统方法在外包计算中的组合性问题,并以FFT为例展示顺序可组合验证机制;在云安全博弈方面,构建融合信号博弈与FlipIt游戏的三方博弈框架,引入格式塔均衡概念以刻画攻击者、防御者与设备间的动态依赖关系,并通过无人车辆控制案例验证框架有效性。最后展望了未来研究方向,包括更广电路类型的支持、自适应策略处理及云安全模型的扩展。原创 2025-10-14 13:51:27 · 32 阅读 · 0 评论 -
34、顺序可组合的有理证明:理论与应用
本文介绍了一种高效且具有顺序可组合性的有理证明协议,适用于由算术电路表示的函数验证。协议通过重复执行Round过程实现对电路输出的验证,通信复杂度为O(d),具备良好的效率和安全性。文章给出了独立合理性和顺序可组合性的理论证明,并引入非自适应证明者模型(如DFS和BFS)以优化安全性分析。特别地,在规则电路(如FFT电路)中,利用定理4可在较小重复次数r下实现kϵR-顺序可组合性,显著提升验证效率。最后探讨了协议在FFT电路中的应用优势及优化方向,包括验证者计算优化与证明者策略选择,展望未来在机器学习、密码原创 2025-10-13 09:07:25 · 17 阅读 · 0 评论 -
33、顺序可组合理性证明的深入解析
本文深入探讨了顺序可组合理性证明的理论基础、协议设计与实际应用。通过定义理性证明与顺序可组合性,分析利润与奖励的关系,并结合PCP模型和唯一内部状态假设,提出确保证明者诚实性的机制。文章还讨论了其在分布式计算与区块链中的应用场景、面临的挑战及未来研究方向,为构建高效、安全的验证系统提供了理论支持。原创 2025-10-12 09:51:06 · 25 阅读 · 0 评论 -
32、当制胜之策是不参与博弈
本文探讨了网络安全中信息不对称在博弈中的作用,分析了筛选与信号传递机制如何通过影响攻击者信念来提升安全性,并指出在特定条件下‘不参与博弈’可能是制胜策略。同时,文章研究了计算外包中的理性证明问题,揭示传统模型在大量任务外包时的经济激励缺陷,提出增强版理性证明定义及相应协议以解决该问题。最后总结现有模型的适用范围与局限,展望未来安全工程中概念化与量化方法的发展方向。原创 2025-10-11 11:13:29 · 16 阅读 · 0 评论 -
31、以信息不对称实现威慑:网络安全博弈分析
本文从博弈论视角分析网络安全中的威慑机制,探讨如何利用信息不对称减少网络攻击。通过构建筛选博弈与信号博弈模型,研究攻击者与用户之间的策略互动。在筛选博弈中,攻击者的信念和成本影响其是否发起攻击;在信号博弈中,用户通过发送安全信号(如隐藏SSID)实现类型分离,从而威慑攻击。文章分析了分离均衡、混合均衡与合并均衡的形成条件,并讨论了实际应用中如何通过增加攻击成本、降低防御成本等手段优化安全策略,为网络安全防护提供理论支持和实践指导。原创 2025-10-10 13:40:36 · 38 阅读 · 0 评论 -
30、网络安全中的威慑博弈:当不行动成为制胜策略
本文探讨了威慑在网络安全中的关键作用,特别是在个人和小企业日常安全防护中的应用。通过分析战略、运营和战术三个层面的威慑机制,结合信息不对称下的筛选与信号传递模型,文章揭示了如何利用复杂性和可观察行为影响攻击者决策。文中还构建了钓鱼诈骗和无线网络攻击两个对手场景,并引入动态不完全信息博弈模型来模拟用户与攻击者的互动。针对攻击图游戏的求解挑战,比较了LP松弛和零和近似等方法,并讨论了不同策略在蜜罐部署中的表现。最终指出,威慑是一种理性、可量化且有效的安全手段,未来可结合AI技术拓展至物联网、云计算等新兴领域。原创 2025-10-09 15:40:00 · 17 阅读 · 0 评论 -
29、不完全信息博弈的近似方法研究
本文研究了不完全信息博弈中的多种近似求解方法,重点分析了线性规划、混合整数规划及零和近似等模型在不同网络拓扑下的性能表现。通过引入CURB集减少策略空间,并提出相关Stackelberg均衡(CSE)作为高质量近似解。实验对比了PI、SOGS、SOZS系列与CSE等算法在企业网、链状网和无结构网络中的可扩展性与解质量,发现CSE策略最优但可扩展性差,SOZS4在效率与质量间取得良好平衡。同时探讨了算法对攻击图参数扰动的敏感性,并给出了实际应用中的策略选择建议与未来研究方向。原创 2025-10-08 09:28:10 · 27 阅读 · 0 评论 -
28、不完全信息博弈的近似方法
本文研究了网络安全中攻击者与防御者之间的不完全信息博弈问题,提出了一种基于攻击图和最优攻击策略的蜜罐分配博弈模型。针对该模型求解复杂度高的问题,介绍了多种近似方法,包括完美信息博弈近似、零和博弈近似和相关均衡承诺,并详细阐述了单Oracle算法、攻击者最佳响应策略计算及线性规划求上界等算法实现。这些方法可在多项式时间内找到接近最优的防御策略,为网络安全中的蜜罐部署提供了有效的决策支持。原创 2025-10-07 10:08:27 · 17 阅读 · 0 评论 -
27、在线社交网络隐私决策与网络安全博弈研究
本文探讨了在线社交网络中的用户隐私决策行为与网络安全中的蜜罐防御博弈模型。通过实验分析了主体效应和图像效应对用户隐私设置的影响,验证了迭代方法在隐私偏好建模中的有效性;同时,构建了基于不完全信息的网络安全博弈模型,利用攻击图和近似算法优化蜜罐部署策略。研究揭示了个性化隐私设置、动态用户教育以及更贴近现实的攻击者知识建模的重要性,并展望了未来在动态隐私、多主体博弈与人工智能应用方向的发展潜力。原创 2025-10-06 13:28:31 · 21 阅读 · 0 评论 -
26、为用户确定受站点约束的离散隐私选项
本文研究了社交网络中站点如何为用户提供受约束的离散隐私选项。通过建立用户信息共享策略与站点收益的双层优化模型,分析了纯策略纳什均衡的存在条件,并提出一种基于模拟的两阶段近似算法:用户端通过虚构博弈收敛策略,站点端迭代添加并优化隐私级别。理论分析表明,在用户舒适水平影响较弱或较强时存在纳什均衡;实验结果验证了同伴压力对隐私选择的显著影响,尤其是‘向下倾斜’压力促使用户更保守分享,同时证实迭代引入选项不会显著改变最终偏好,支持了算法可行性。研究为社交平台动态设计隐私设置提供了理论依据和实用方法。原创 2025-10-05 12:53:51 · 18 阅读 · 0 评论 -
25、环境安全与社交网络隐私的博弈策略研究
本文研究了环境安全与社交网络隐私中的博弈策略。在环境安全方面,提出了一种融合报警系统的安全博弈模型,分析了问题的计算复杂性,并提供了精确与启发式算法以应对不同规模的巡逻决策问题;在特定条件下,停留等待报警信号的策略可能最优。在社交网络隐私方面,构建了基于Stackelberg博弈的模型,将站点设为领导者、用户为追随者,通过优化离散隐私选项实现内容共享与用户满意度的平衡,并设计近似算法进行求解,实验验证了同伴影响和个体舒适度对用户隐私决策的共同作用。最后总结了两个领域的模型贡献与未来研究方向。原创 2025-10-04 09:02:53 · 23 阅读 · 0 评论 -
24、环境保护安全博弈模型解析
本文研究了环境保护安全博弈模型,提出了一种精确算法和启发式算法来解决覆盖集问题。通过对算法复杂度的理论分析与实验评估,表明精确算法在大规模场景下计算成本高,而启发式算法能在较短时间内提供高质量近似解。文章还探讨了去除被支配行动的影响、对漏检的鲁棒性,并提出了算法优化建议。最后,讨论了该模型在环境巡逻、应急响应和资源分配等实际场景中的应用前景,为环境保护领域的安全决策提供了理论支持与实践指导。原创 2025-10-03 09:15:51 · 21 阅读 · 0 评论 -
23、用于环境保护的安全博弈模型
本文提出了一种集成空间不确定报警系统的安全博弈模型,用于提升复杂环境下的环境保护巡逻效率。模型扩展了传统的巡逻安全博弈,引入能提供潜在攻击区域信息的传感器报警系统,并形式化了防御者在收到信号后的响应策略。研究表明,寻找最优策略是FNP-困难的,为此设计了基于动态规划的精确指数时间算法和启发式算法。通过实验评估了算法的可扩展性与解的质量,结果表明启发式算法能在较短时间内提供近似最优解。未来工作包括考虑误报漏检、多巡逻者协同及实时决策优化。原创 2025-10-02 09:34:45 · 18 阅读 · 0 评论 -
22、基于后悔值的安全策略优化与应用
本文提出了一种基于后悔值的安全策略优化方法,针对安全博弈中数据缺乏和攻击者行为不确定的问题,设计了ARROW和ARROW-Perfect算法以应对有限理性与完全理性攻击者场景。通过引入UAV规划的贪心与最小成本网络流启发式方法,有效减少防御者的后悔值。实验结果表明,该方法在合成数据和真实世界野生动物保护数据上均显著优于传统策略,具备良好的可扩展性和实用性,为资源受限环境下的安全决策提供了新思路。原创 2025-10-01 12:12:42 · 26 阅读 · 0 评论 -
21、充分利用遗憾:基于遗憾的解决方案
本文研究了绿色安全博弈中收益不确定性下的防御策略优化问题。通过比较13种行为模型,发现SUQR-4在预测准确率上表现最优,凸显距离特征的重要性。针对收益不确定性,引入行为最小最大遗憾(MMRb)概念,并提出ARROW算法,结合约束采样与生成方法,有效应对有界理性攻击者的非凸优化挑战。进一步提出ARROW-Perfect算法,利用完全理性假设在多项式时间内精确求解,为护林员等防御方提供鲁棒策略支持,具有重要的理论与实践价值。原创 2025-09-30 09:54:12 · 16 阅读 · 0 评论 -
20、利用遗憾:绿色安全博弈中基于遗憾的解决方案
本文针对绿色安全博弈(GSG)中存在的行为模型验证缺失、收益不确定性处理不足以及传感器数据利用不充分等问题,提出了四项关键贡献:首次使用真实世界野生动物公园数据验证行为模型的有效性;提出ARROW算法,解决在对手行为模型下防御者与攻击者双方收益不确定性的最小最大遗憾问题;设计ARROW-Perfect算法,在缺乏攻击数据时假设对手完全理性以应对收益不确定性;并提出两种基于MMR的多目标收益启发策略,有效利用无人机等移动传感器减少不确定性。通过真实数据集和实验验证,所提方法显著提升了安全资源分配效率与预测精度原创 2025-09-29 16:32:07 · 17 阅读 · 0 评论 -
19、行为概率加权下的相互依赖安全博弈分析
本文研究了行为概率加权下的三种相互依赖安全博弈模型:总努力博弈、最弱环节博弈和最佳一击博弈,分析了不同玩家类型下的纯纳什均衡特性及社会最优解。通过引入Prelec概率加权函数,揭示了非线性感知对安全投资决策的影响,发现行为偏差导致更丰富的均衡结构,内部均衡攻击概率随成本和玩家数量连续变化。同时探讨了同质与异质玩家在各类博弈中的投资行为,并指出未来应深入研究复杂网络结构对安全博弈的影响。原创 2025-09-28 11:12:54 · 13 阅读 · 0 评论 -
18、行为概率加权下的相互依赖安全博弈
本文研究了行为概率加权对三种基本相互依赖安全博弈模型(总努力博弈、最弱环节博弈和最佳一击博弈)中均衡策略的影响。基于Prelec概率加权函数,分析了同质与异质参与者在不同博弈环境下的纳什均衡特性,揭示了行为偏差如何导致更丰富且非线性的决策模式。结果表明,相较于传统风险中性假设,概率加权使均衡结构更加复杂,存在内部均衡与多重均衡的可能性,并影响社会最优的实现。文章还探讨了实际应用意义及未来研究方向,包括扩展博弈模型、综合行为因素和实际系统应用。原创 2025-09-27 13:57:39 · 20 阅读 · 0 评论 -
17、在线学习与均衡计算结合在安全博弈中的实验研究
本文研究了在线学习与均衡计算结合在安全博弈中的应用,通过实验评估了不同误差水平下Stackelberg均衡策略的性能,并比较了多种组合算法(COMB1-COMB4)与EXP3算法在对抗性环境中的表现。实验结果表明,结合不精确领域知识的COMB算法在游戏初期显著提升性能,且能有效适应攻击者策略变化,尤其在多资源场景下表现优异。随着防御资源增加,COMB3和COMB4算法优于传统方法,最终收敛至EXP3的长期性能。研究为动态安全环境中鲁棒防御策略的设计提供了有效路径。原创 2025-09-26 12:26:32 · 27 阅读 · 0 评论 -
16、边境巡逻博弈中的防御策略与算法组合
本文探讨了在边境巡逻安全博弈中,防御者如何应对自适应攻击者的策略设计问题。基于对攻击者偏好向量的估计误差模型和虚构游戏学习行为,文章分析了Stackelberg与Nash均衡的理论基础,并针对单资源与多资源场景分别介绍了EXP3与COMB-EXP-1等在线学习算法。为进一步提升防御效能,提出了四种结合博弈论均衡解与在线学习的组合算法(COMB1-COMB4),通过初始化、虚拟收益比较、动态切换和多均衡选择机制,有效融合先验知识与实时学习能力。实验表明,这些组合策略能显著增强防御者在不确定和动态环境下的适应性原创 2025-09-25 13:00:17 · 22 阅读 · 0 评论 -
15、安全博弈中的分布式随机策略与混合学习方法
本文研究了安全博弈中的分布式随机策略与混合学习方法,提出在移动性约束下优化收敛速率和巡逻成本的数学模型,并通过数值实验验证其有效性。针对传统均衡模型静态、不适应动态攻击的问题,结合在线学习技术提出了三种混合策略:基于均衡的学习启动、动态权重组合和自适应切换。通过模拟边境巡逻场景,实验表明混合方法在防御收益和应对攻击者适应性方面优于纯均衡或纯学习方法,兼具稳定性与灵活性,具有良好的实际应用前景。原创 2025-09-24 10:16:07 · 23 阅读 · 0 评论 -
14、分布式随机Stackelberg策略:防御与对抗的博弈
本文研究了一种用于网络安全防御的分布式随机Stackelberg策略,构建了包含多个目标与防御者的博弈模型。防御者通过分布式巡逻策略决定各目标被守护的时间比例,攻击者根据可观测信息选择最优攻击目标。文章提出了基于无源性理论的收敛条件,确保系统状态渐近趋于Stackelberg均衡,并分析了攻击者利用侧面信息时对均衡的偏差及其上界。为进一步降低防御成本,设计了以最小化移动成本为目标的半定规划优化问题,并给出求解方法。研究为动态对抗环境下的分布式防御提供了理论支持与实现路径。原创 2025-09-23 13:41:52 · 39 阅读 · 0 评论 -
13、抵御隐蔽攻击的博弈论模型与分布式策略研究
本文研究了基于博弈论的隐蔽攻击防御模型,重点探讨了Stackelberg安全博弈在资源受限环境下的分布式策略实现。通过分析两节点与五节点设置下的均衡类型及参数影响,揭示了资源预算和节点价值对攻防策略的影响规律。提出了一种基于局部通信的分布式随机策略,利用非线性连续动态近似和无源性方法,证明其可收敛至Stackelberg均衡,并通过凸优化提升收敛速率与资源效率。数值实验表明,该分布式策略在计算复杂度和资源利用方面优于集中式方法,适用于多机器人巡逻、入侵检测等实际场景。未来工作将聚焦于复杂网络环境的应用与动态原创 2025-09-22 16:31:47 · 30 阅读 · 0 评论 -
12、有限资源下抵御隐形攻击的博弈论模型
本文提出了一种考虑有限资源下抵御隐形攻击的两人非零和博弈模型,专门针对高级持续性威胁(APT)的特点进行建模。模型包含多个独立节点,攻击者与防御者在连续时间范围内行动,各自受限于严格的资源预算。通过引入不对称信息结构——防御者公开策略而攻击者隐蔽行动——文章分析了最佳响应策略、纳什均衡及序贯博弈下的均衡解。研究证明周期性防御是对非自适应i.i.d.攻击的最佳响应,反之亦然,并设计了基于动态规划的算法帮助防御者寻找接近最优的策略。数值实验表明,在序贯博弈中防御者可通过先发优势获得更高收益。该模型可应用于密钥轮原创 2025-09-21 11:24:35 · 31 阅读 · 0 评论 -
11、资源攻防博弈中的策略分析与均衡求解
本文深入分析了资源攻防场景下的博弈模型,涵盖FlipThemF₀、FlipThemFₑ和FlipThemSₑ三种情形,分别对应全阈值全重置、(n,t)-阈值全重置及单重置策略。通过构建连续时间马尔可夫链与平稳分布,推导出攻击者与防御者的收益函数,并探讨不同条件下纳什均衡的存在性与求解方法。研究揭示了成本比ρ、资源数量n、阈值t及最小防御速率ε对策略选择的关键影响,为系统安全设计提供了理论支持。未来方向包括异构资源建模与高效数值求解算法的开发。原创 2025-09-20 14:36:21 · 24 阅读 · 0 评论 -
10、阈值FlipThem游戏:胜者无需通吃
本文研究了一种基于FlipIt游戏的变体——(n, t)-FlipThem游戏,其中攻击者试图控制至少t个资源以获胜,而防御者通过全重置或单重置策略保护多个资源。文章采用连续时间马尔可夫链建模,分析了双向和单向隐蔽场景下的纳什均衡,并探讨了不同成本比率下最优资源配置策略。结果表明,在全重置情况下,纳什均衡仅依赖于阈值和成本参数,与资源总数无关;随着攻击者成本增加,防御者可降低所需资源阈值以优化收益。研究为密码管理、云安全、多方计算等场景提供了理论支持和防御优化方法。原创 2025-09-19 16:59:40 · 32 阅读 · 0 评论 -
9、动态环境下的安全时机博弈
本文研究了动态环境下的安全时机博弈,提出了一种考虑时间依赖性的攻防模型,其中防御者通过安全投资减少损失,而攻击者选择最优时机利用发现的漏洞。文章分析了离散与连续时间模型中的纳什均衡,证明在特定条件下攻击者不会囤积漏洞,并通过数值示例展示了不同漏洞发现模式对防御策略的影响。研究还探讨了未来方向,包括非‘从不等待’均衡和防御者先行的Stackelberg均衡,为实际网络安全防护提供了理论支持。原创 2025-09-18 11:03:49 · 20 阅读 · 0 评论 -
8、动态环境下安全时机博弈研究
本文研究了动态环境下的安全时机博弈,提出了一种考虑漏洞发现与修复随时间变化的新型博弈模型。该模型扩展了经典的FlipIt框架,引入了时间相关的漏洞发现函数V(t)和防御投资d(t),并构建了连续与离散两个时间版本以增强适用性。文章分析了均衡的存在性与性质,给出了非等待均衡的充要条件,并通过数值示例展示了防御者与攻击者的最优策略演化。研究表明,漏洞发现模式、生命周期和防御投入显著影响双方决策,为网络安全资源配置提供了理论支持。原创 2025-09-17 09:58:26 · 24 阅读 · 0 评论 -
7、安全博弈中的预测可靠性与动态环境建模
本文探讨了安全博弈中的两个关键问题:预测攻击者行为的可靠性与动态环境下的安全模型构建。通过分析SSG和NSG实验,发现预测准确性在不同类型博弈中对实际防御性能的反映存在显著差异,NSG的预测可靠性较低且不受训练集大小影响,而EAS得分高的训练集可提升预测效果。图结构特征如源节点出度和中间节点数也显著影响预测可靠性。此外,针对现实中攻击成本与成功率随时间变化的问题,提出能捕捉时间动态性的新模型,涵盖连续与离散时间版本,并揭示攻击者在漏洞利用时机上的两难困境。研究为提升防御策略的有效性提供了理论支持与实践方向。原创 2025-09-16 11:43:13 · 27 阅读 · 0 评论 -
6、网络安全博弈中的攻击者行为建模与防御策略研究
本文研究了网络安全博弈中的攻击者行为建模与防御策略生成方法。基于攻防双方的策略空间和效用函数,对比分析了完全理性模型、量子响应(QR)模型、主观效用量子响应(SUQR)模型及其扩展GSUQR模型在预测人类攻击者行为方面的性能。通过Amazon Mechanical Turk平台开展人体实验,采用最大似然估计学习模型参数,并引入预测可靠性和暴露攻击面(EAS)等指标评估模型的实际有效性。实验结果表明,考虑有限理性的SUQR类模型具有更高的预测准确率和预测可靠性,且使用非Maximin策略数据训练可显著提升模型原创 2025-09-15 15:34:45 · 23 阅读 · 0 评论 -
5、网络安全中的风险分担与预测可靠性
本文探讨了网络安全中的两个关键领域:网络保险的风险分担机制与网络安全博弈的预测可靠性。在网络保险方面,分析了用户在不同保费和覆盖水平下的决策行为,提出了影响订阅选择的关键命题,并讨论了保险政策设计、风险评估与成本结构的关系。在网络安全博弈方面,研究了人类有限理性对模型预测准确性的影响,指出暴露攻击面(EAS)和图结构是影响预测可靠性的核心因素。文章进一步揭示了二者在实际应用中的关联,并提出了未来研究方向,包括保险政策创新、模型适应性提升、数据方法改进及跨领域合作,旨在为网络安全提供更有效的综合解决方案。原创 2025-09-14 14:24:42 · 21 阅读 · 0 评论
分享