基本算法(用 PASCAL 描述)
1.数论算法 求两数的最大公约数 function gcd(a,b:integer):integer; begin if b=0 then gcd:=a else gcd:=gcd (b,a mod B); end;
求两数的最小公倍数 function lcm(a,b:integer):integer; begin if a< b then swap(a,B); lcm:=a; while lcm mod b >0 do inc(lcm,a); end;
素数的求法 A.小范围内判断一个数是否为质数: function prime (n: integer): Boolean; var I: integer; begin for I:=2 to trunc(sqrt(n)) do if n mod I=0 then begin prime:=false; exit; end; prime:=true; end;
B.判断longint范围内的数是否为素数(包含求50000以内的素数表): procedure getprime; var i,j:longint; p:array[1..50000] of boolean; begin fillchar(p,sizeof(p),true); p[1]:=false; i:=2; while i< 50000 do begin if p[i] then begin j:=i*2; while j< 50000 do begin p[j]:=false; inc(j,i); end; end; inc(i); end; l:=0; for i:=1 to 50000 do if p[i] then begin inc(l);pr[l]:=i; end; end;{getprime}
function prime(x:longint):integer; var i:integer; begin prime:=false; for i:=1 to l do if pr[i] >=x then break else if x mod pr[i]=0 then exit; prime:=true; end;{prime}
2.
3.
4.求最小生成树 A.Prim算法: procedure prim(v0:integer); var lowcost,closest:array[1..maxn] of integer; i,j,k,min:integer; begin for i:=1 to n do begin lowcost[i]:=cost[v0,i]; closest[i]:=v0; end; for i:=1 to n-1 do begin {寻找离生成树最近的未加入顶点k} min:=maxlongint; for j:=1 to n do if (lowcost[j]< min) and (lowcost[j]< >0) then begin min:=lowcost[j]; k:=j; end; lowcost[k]:=0; {将顶点k加入生成树} {生成树中增加一条新的边k到closest[k]} {修正各点的lowcost和closest值} for j:=1 to n do if cost[k,j]< lwocost[j] then begin lowcost[j]:=cost[k,j]; closest[j]:=k; end; end; end;{prim}
B.Kruskal算法:(贪心) 按权值递增顺序删去图中的边,若不形成回路则将此边加入最小生成树。 function find(v:integer):integer; {返回顶点v所在的集合} var i:integer; begin i:=1; while (i< =n) and (not v in vset[i]) do inc(i); if i< =n then find:=i else find:=0; end;
procedure kruskal; var tot,i,j:integer; begin for i:=1 to n do vset[i]:=[i];{初始化定义n个集合,第I个集合包含一个元素I} p:=n-1; q:=1; tot:=0; {p为尚待加入的边数,q为边集指针} sort; {对所有边按权值递增排序,存于e[I]中,e[I].v1与e[I].v2为边I所连接的两个顶点的序号,e[I].len为第I条边的长度} while p >0 do begin i:=find(e[q].v1);j:=find(e[q].v2); if i< >j then begin inc(tot,e[q].len); vset[i]:=vset[i]+vset[j];vset[j]:=[]; dec(p); end; inc(q); end; writeln(tot); end;
5.最短路径 A.标号法求解单源点最短路径: var a:array[1..maxn,1..maxn] of integer; b:array[1..maxn] of integer; {b[i]指顶点i到源点的最短路径} mark:array[1..maxn] of boolean;
procedure bhf; var best,best_j:integer; begin fillchar(mark,sizeof(mark),false); mark[1]:=true; b[1]:=0;{1为源点} repeat best:=0; for i:=1 to n do If mark[i] then {对每一个已计算出最短路径的点} for j:=1 to n do if (not mark[j]) and (a[i,j] >0) then if (best=0) or (b[i]+a[i,j]< best) then begin best:=b[i]+a[i,j]; best_j:=j; end; if best >0 then begin b[best_j]:=best;mark[best_j]:=true; end; until best=0; end;{bhf}
B.Floyed算法求解所有顶点对之间的最短路径: procedure floyed; begin for I:=1 to n do for j:=1 to n do if a[I,j] >0 then p[I,j]:=I else p[I,j]:=0; {p[I,j]表示I到j的最短路径上j的前驱结点} for k:=1 to n do {枚举中间结点} for i:=1 to n do for j:=1 to n do if a[i,k]+a[j,k]< a[i,j] then begin a[i,j]:=a[i,k]+a[k,j]; p[I,j]:=p[k,j]; end; end;
C. Dijkstra 算法: 类似标号法,本质为贪心算法。 var a:array[1..maxn,1..maxn] of integer; b,pre:array[1..maxn] of integer; {pre[i]指最短路径上I的前驱结点} mark:array[1..maxn] of boolean; procedure dijkstra(v0:integer); begin fillchar(mark,sizeof(mark),false); for i:=1 to n do begin d[i]:=a[v0,i]; if d[i]< >0 then pre[i]:=v0 else pre[i]:=0; end; mark[v0]:=true; repeat {每循环一次加入一个离1集合最近的结点并调整其他结点的参数} min:=maxint; u:=0; {u记录离1集合最近的结点} for i:=1 to n do if (not mark[i]) and (d[i]< min) then begin u:=i; min:=d[i]; end; if u< >0 then begin mark[u]:=true; for i:=1 to n do if (not mark[i]) and (a[u,i]+d[u]< d[i]) then begin d[i]:=a[u,i]+d[u]; pre[i]:=u; end; end; until u=0; end;
D.计算图的传递闭包 Procedure Longlink; Var T:array[1..maxn,1..maxn] of boolean; Begin Fillchar(t,sizeof(t),false); For k:=1 to n do For I:=1 to n do For j:=1 to n do T[I,j]:=t[I,j] or (t[I,k] and t[k,j]); End;
6.0-1背包问题(部分背包问题可有贪心法求解:计算Pi/Wi) 数据结构: w[i]:第i个背包的重量; p[i]:第i个背包的价值; (1)0-1背包: 每个背包只能使用一次或有限次(可转化为一次): A.求最多可放入的重量。 NOIP2001 装箱问题 有一个箱子容量为v(正整数,o≤v≤20000),同时有n个物品(o≤n≤30),每个物品有一个体积 (正整数)。要求从 n 个物品中,任取若千个装入箱内,使箱子的剩余空间为最小。 l 搜索方法 procedure search(k,v:integer); {搜索第k个物品,剩余空间为v} var i,j:integer; begin if v< best then best:=v; if v-(s[n]-s[k-1]) >=best then exit; {s[n]为前n个物品的重量和} if k< =n then begin if v >w[k] then search(k+1,v-w[k]); search(k+1,v); end; end;
l DP F[I,j]为前i个物品中选择若干个放入使其体积正好为j的标志,为布尔型。 实现:将最优化问题转化为判定性问题 F[I,j]=f[i-1,j-w[i]] (w[I]< =j< =v) 边界:f[0,0]:=true. For I:=1 to n do For j:=w[I] to v do F[I,j]:=f[I-1,j-w[I]]; 优化:当前状态只与前一阶段状态有关,可降至一维。 F[0]:=true; For I:=1 to n do begin F1:=f; For j:=w[I] to v do If f[j-w[I]] then f1[j]:=true; F:=f1; End;
B.求可以放入的最大价值。 F[I,j]=
C.求恰好装满的情况数。
(2)每个背包可使用任意次: A.求最多可放入的重量。 状态转移方程为 f[I,j]=max{f[i-w[j]
B.求可以放入的最大价值。 USACO 1.2 Score Inflation 进行一次竞赛,总时间T固定,有若干种可选择的题目,每种题目可选入的数量不限,每种题目有一个ti(解答此题所需的时间)和一个si(解答此题所得的分数),现要选择若干题目,使解这些题的总时间在T以内的前提下,所得的总分最大,求最大的得分。 *易想到: f[i,j] = max { f [i- k*w[j], j-1] + k*v[j] } (0< =k< = i div w[j]) 其中f[i,j]表示容量为i时取前j种背包所能达到的最大值。 *优化: Begin FillChar(problem,SizeOf(problem),0); Assign(Input,'inflate.in'); Reset(Input); Readln(M,N); For i:=1 To N Do With problem[i] Do Readln(point,time); Close(Input);
FillChar(f,SizeOf(f),0); For i:=1 To M Do For j:=1 To N Do If i-problem[j].time >=0 Then Begin t:=problem[j].point+f[i-problem[j].time]; If t >f[i] Then f[i]:=t; End;
Assign(Output,'inflate.out'); Rewrite(Output); Writeln(f[M]); Close(Output); End. C.求恰好装满的情况数。 Ahoi2001 Problem2 求自然数n本质不同的质数和的表达式的数目。 思路一,生成每个质数的系数的排列,在一一测试,这是通法。 procedure try(dep:integer); var i,j:integer; begin cal; {此过程计算当前系数的计算结果,now为结果} if now >n then exit; {剪枝} if dep=l+1 then begin {生成所有系数} cal; if now=n then inc(tot); exit; end; for i:=0 to n div pr[dep] do begin xs[dep]:=i; try(dep+1); xs[dep]:=0; end; end;
思路二,递归搜索效率较高 procedure try(dep,rest:integer); var i,j,x:integer; begin if (rest< =0) or (dep=l+1) then begin if rest=0 then inc(tot); exit; end; for i:=0 to rest div pr[dep] do try(dep+1,rest-pr[dep]*i); end;
思路三:可使用动态规划求解 USACO1.2 money system V个物品,背包容量为n,求放法总数。 转移方程:
Procedure update; var j,k:integer; begin c:=a; for j:=0 to n do if a[j] >0 then for k:=1 to n div now do if j+now*k< =n then inc(c[j+now*k],a[j]); a:=c; end; {main} begin read(now); {读入第一个物品的重量} i:=0; {a[i]为背包容量为i时的放法总数} while i< =n do begin a[i]:=1; inc(i,now); end; {定义第一个物品重的整数倍的重量a值为1,作为初值} for i:=2 to v do begin read(now); update; {动态更新} end; writeln(a[n]);
7.排序算法 A.快速排序: procedure sort(l,r:integer); var i,j,mid:integer; begin i:=l;j:=r; mid:=a[(l+r) div 2]; {将当前序列在中间位置的数定义为中间数} repeat while a[i]< mid do inc(i); {在左半部分寻找比中间数大的数} while mid< a[j] do dec(j);{在右半部分寻找比中间数小的数} if i< =j then begin {若找到一组与排序目标不一致的数对则交换它们} swap(a[i],a[j]); inc(i);dec(j); {继续找} end; until i >j; if l< j then sort(l,j); {若未到两个数的边界,则递归搜索左右区间} if i< r then sort(i,r); end;{sort}
B.插入排序: procedure insert_sort(k,m:word); {k为当前要插入的数,m为插入位置的指针} var i:word; p:0..1; begin p:=0; for i:=m downto 1 do if k=a[i] then exit; repeat If k >a[m] then begin a[m+1]:=k; p:=1; end else begin a[m+1]:=a[m]; dec(m); end; until p=1; end;{insert_sort} l 主程序中为: a[0]:=0; for I:=1 to n do insert_sort(b[I],I-1);
C.选择排序: procedure sort; var i,j,k:integer; begin for i:=1 to n-1 do begin k:=i; for j:=i+1 to n do if a[j]< a[k] then k:=j; {找出a[I]..a[n]中最小的数与a[I]作交换} if k< >i then begin a[0]:=a[k];a[k]:=a[i];a[i]:=a[0]; end; end; end;
D. 冒泡排序 procedure sort; var i,j,k:integer; begin for i:=n downto 1 do for j:=1 to i-1 do if a[j] >a[i] then begin a[0]:=a[i];a[i]:=a[j];a[j]:=a[0]; end; end;
E.堆排序: procedure sift(i,m:integer);{调整以i为根的子树成为堆,m为结点总数} var k:integer; begin a[0]:=a[i]; k:=2*i;{在完全二叉树中结点i的左孩子为2*i,右孩子为2*i+1} while k< =m do begin if (k< m) and (a[k]< a[k+1]) then inc(k);{找出a[k]与a[k+1]中较大值} if a[0]< a[k] then begin a[i]:=a[k];i:=k;k:=2*i; end else k:=m+1; end; a[i]:=a[0]; {将根放在合适的位置} end;
procedure heapsort; var j:integer; begin for j:=n div 2 downto 1 do sift(j,n); for j:=n downto 2 do begin swap(a[1],a[j]); sift(1,j-1); end; end;
F. 归并排序 {a为序列表,tmp为辅助数组} procedure merge(var a:listtype; p,q,r:integer); {将已排序好的子序列a[p..q]与a[q+1..r]合并为有序的tmp[p..r]} var I,j,t:integer; tmp:listtype; begin t:=p;i:=p;j:=q+1;{t为tmp指针,I,j分别为左右子序列的指针} while (t< =r) do begin if (i< =q){左序列有剩余} and ((j >r) or (a[i]< =a[j])) {满足取左边序列当前元素的要求} then begin tmp[t]:=a[i]; inc(i); end else begin tmp[t]:=a[j];inc(j); end; inc(t); end; for i:=p to r do a[i]:=tmp[i]; end;{merge}
procedure merge_sort(var a:listtype; p,r: integer); {合并排序a[p..r]} var q:integer; begin if p< >r then begin q:=(p+r-1) div 2; merge_sort (a,p,q); merge_sort (a,q+1,r); merge (a,p,q,r); end; end; {main} begin merge_sort(a,1,n); end.
G.基数排序 思想:对每个元素按从低位到高位对每一位进行一次排序
8.高精度计算 A. B. C. D.
9.树的遍历顺序转换 A. 已知前序中序求后序 procedure Solve(pre,mid:string); var i:integer; begin if (pre='') or (mid='') then exit; i:=pos(pre[1],mid); solve(copy(pre,2,i),copy(mid,1,i-1)); solve(copy(pre,i+1,length(pre)-i),copy(mid,i+1,length(mid)-i)); post:=post+pre[1]; {加上根,递归结束后post即为后序遍历} end;
B.已知中序后序求前序 procedure Solve(mid,post:string); var i:integer; begin if (mid='') or (post='') then exit; i:=pos(post[length(post)],mid); pre:=pre+post[length(post)]; {加上根,递归结束后pre即为前序遍历} solve(copy(mid,1,I-1),copy(post,1,I-1)); solve(copy(mid,I+1,length(mid)-I),copy(post,I,length(post)-i)); end;
C.已知前序后序求中序
function ok(s1,s2:string):boolean; var i,l:integer; p:boolean; begin ok:=true; l:=length(s1); for i:=1 to l do begin p:=false; for j:=1 to l do if s1[i]=s2[j] then p:=true; if not p then begin ok:=false;exit;end; end; end;
procedure solve(pre,post:string); var i:integer; begin if (pre='') or (post='') then exit; i:=0; repeat inc(i); until ok(copy(pre,2,i),copy(post,1,i)); solve(copy(pre,2,i),copy(post,1,i)); midstr:=midstr+pre[1]; solve(copy(pre,i+2,length(pre)-i-1),copy(post,i+1,length(post)-i-1)); end;
10.求图的弱连通子图(DFS) procedure dfs ( now,color: integer); begin for i:=1 to n do if a[now,i] and c[i]=0 then begin c[i]:=color; dfs(I,color); end; end;
11.拓扑排序 寻找一数列,其中任意连续p项之和为正,任意q 项之和为负,若不存在则输出NO.
12.进制转换 A.整数任意正整数进制间的互化
NOIP1996数制转换 设字符串A$的结构为: A$='mp' 其中m为数字串(长度< =20),而n,p均为1或2位的数字串(其中所表达的内容在2-10之间) 程序要求:从键盘上读入A$后(不用正确性检查),将A$中的数字串m(n进制)以p进制的形式输出. 例如:A$='48< 10 >8' 其意义为:将10进制数48,转换为8进制数输出. 输出结果:48< 10 >=60< 8 >
B.实数任意正整数进制间的互化 C.负数进制: NOIP2000 设计一个程序,读入一个十进制数的基数和一个负进制数的基数,并将此十进制数转换为此负 进制下的数:-R∈{-2,-3,-4,....-20}
13.全排列与组合的生成 排列的生成:(1..n) procedure solve(dep:integer); var i:integer; begin if dep=n+1 then begin writeln(s);exit; end; for i:=1 to n do if not used[i] then begin s:=s+chr(i+ord('0'));used[i]:=true; solve(dep+1); s:=copy(s,1,length(s)-1); used[i]:=false; end; end; 组合的生成(1..n中选取k个数的所有方案) procedure solve(dep,pre:integer); var i:integer; begin if dep=k+1 then begin writeln(s);exit; end; for i:=1 to n do if (not used[i]) and (i >pre) then begin s:=s+chr(i+ord('0'));used[i]:=true; solve(dep+1,i); s:=copy(s,1,length(s)-1); used[i]:=false; end; end;
14 递推关系 计算字串序号模型 USACO1.2.5 StringSobits 长度为N (N< =31)的01串中1的个数小于等于L的串组成的集合中找出按大小排序后的第I个01串。
数字划分模型 *NOIP2001数的划分 将整数n分成k份,且每份不能为空,任意两种分法不能相同(不考虑顺序)。 d[0,0]:=1; for p:=1 to n do for i:=p to n do for j:=k downto 1 do inc(d[i,j],d[i-p,j-1]); writeln(d[n,k]);
*变形1:考虑顺序 d[ i, j] : = d [ i-k, j-1] (k=1..i) *变形2:若分解出来的每个数均有一个上限m d[ i, j] : = d [ i-k, j-1] (k=1..m)
15.算符优先法求解表达式求值问题 const maxn=50; var s1:array[1..maxn] of integer; {s1为数字栈} s2:array[1..maxn] of char; {s2为算符栈} t1,t2:integer; {栈顶指针}
procedure calcu; var x1,x2,x:integer; p:char; begin p:=s2[t2]; dec(t2); x2:=s1[t1]; dec(t1); x1:=s1[t1]; dec(t1); case p of '+':x:=x1+x2; '-':x:=x1-x2; '*':x:=x1*x2; '/':x:=x1 div 2; end; inc(t1);s1[t1]:=x; end;
procedure work; var c:char;v:integer; begin t1:=0;t2:=0; read©; while c< >';' do case c of '+','-': begin while (t2 >0) and (s2[t2]< >'(') do calcu; inc(t2);s2[t2]:=c; read©; end ; '*','/':begin if (t2 >0) and ((s2[t2]='*') or (s2[t2]='/')) then calcu; inc(t2);s2[t2]:=c; read©; end; '(':begin inc(t2); s2[t2]:=c; read©; end; ')':begin while s2[t2]< >'(' do calcu; dec(t2); read©; end; '0'..'9':begin v:=0; repeat v:=10*v+ord©-ord('0'); read©; until (c< '0') or (c >'9'); inc(t1); s1[t1]:=v; end; end; while t2 >0 do calcu; writeln(s1[t1]); end;
16.查找算法 折半查找 function binsearch(k:keytype):integer; var low,hig,mid:integer; begin low:=1;hig:=n; mid:=(low+hig) div 2; while (a[mid].key< >k) and (low< =hig) do begin if a[mid].key >k then hig:=mid-1 else low:=mid+1; mid:=(low+hig) div 2; end; if low >hig then mid:=0; binsearch:=mid; end; 树形查找 二叉排序树:每个结点的值都大于其左子树任一结点的值而小于其右子树任一结点的值。 查找 function treesrh(k:keytype):pointer; var q:pointer; begin q:=root; while (q< >nil) and (q^.key< >k) do if k< q^.key then q:=q^.left else q:=q^.right; treesrh:=q; end;
17.KMP算法
18.贪心 *会议问题 (1) n个活动每个活动有一个开始时间和一个结束时间,任一时刻仅一项活动进行,求满足活动数最多的情况。 解:按每项活动的结束时间进行排序,排在前面的优先满足。
(2)会议室空闲时间最少。
(3)每个客户有一个愿付的租金,求最大利润。
(4)共R间会议室,第i个客户需使用i间会议室,费用相同,求最大利润。
附录1 常用技巧 1.带权中位数 我国蒙古大草原上有N(N是不大于100的自然数)个牧民定居点P1(X1,Y1)、P2(X2,Y2)、 …Pn(Xn,Yn),相应地有关权重为Wi,现在要求你在大草原上找一点P(Xp,Yp),使P点到任 一点Pi的距离Di与Wi之积之和为最小。 即求 D=W1*D1+W2*D2+…+Wi*Di+…+Wn*Dn 有最小值 结论:对x与y两个方向分别求解带权中位数,转化为一维。 设最佳点p为点k,则点k满足: 令W为点k到其余各点的带权距离之和,则 sigema( i=1 to k-1) Wi*Di < = W/2 sigema( i=k+1 to n) Wi*Di < = W/2 同时满足上述两式的点k即为带权中位数。
2.求一序列中连续子序列的最大和 begin maxsum:=-maxlongint; sum:=0; for i:=1 to n do begin inc(sum,data[i]); if sum >maxsum then maxsum:=sum; if sum< 0 then sum:=0; end; writeln(maxsum); end; |