题目要求:
给定一个𝑛∗𝑚的矩阵,每个单元中都有一个非负整数,只能向右或向下移动。求从左上角到右下角的所有路径中的最大值(每条路径的值为对路径中所进过的格子中的数求和)
主要思路:
这道题目我用二叉树的思想来解决,左上角为初始结点,右下角为目标结点,每个节点(除目标结点外)都有两个子结点,分别表示往右走和往下走。先通过枚举法列出所有可能的路径,用队列实现打印所有路径。用结构体表示队列中每个点的状态(坐标值及其父结点,初始结点的父结点为-1),开始初始结点(根结点)进队列,然后循环执行以下操作直到队列为空:(1)结点Q出队列。(2)判断Q是否到达目标结点(叶节点),若到达,则依据每个结点的父结点,输出从叶结点到根结点的这条路径。(3)若Q的右结点和下结点未出边界,则记录其父结点的位置(即Q的位置),并进队列。输出可以看做是一棵二叉树从根结点到叶结点的所有路径。列出所有路径之后计算每条路径的长度之和,输出最大的值和该条路径即可。
#include <stdio.h>
#include<algorithm>
#include<iostream>
using namespace std;
int a[100][100],m,n,flag=0,cnt=0;
typedef struct temp //用结构体表示队列中每个点的状态:坐标值及其父结点
{
int x;
int y;
int parent;
}
Queue;
int fun(Queue *q,int i) //这里利用递归先进后出的独特性进行输出
{
if(i==-1)return 0;
int n=fun(q,q[i].parent);
printf("%d ->>",a[q[i].x][q[i].y]);
return a[q[i].x][q[i].y]+n;
}
int path(Queue *q,int m, int n)
{
int front = 0,rear = 0, i=0,s=0,sum=0;
q[rear].x = 0; //初始化初始结点
q[rear].y = 0;
q[rear++].parent = -1; //初始结点的父结点为-1
while (front != rear) //结点Q出队列
{
if (q[front].y < n-1) //若Q的右结点和下结点未出边界,则记录其父结点的位置(即Q的位置),并进队列
{
q[rear].x = q[front].x;
q[rear].y = q[front].y+1;
q[rear++].parent = front;
}
if (q[front].x < m-1)
{
q[rear].x = q[front].x+1;
q[rear].y = q[front].y;
q[rear++].parent = front;
}
if(q[front].x==m-1&&q[front].y==n-1) //判断是否到叶子节点,若到达,则依据每个结点的父结点,找出从叶结点到根结点的这条路径。便于进行累计和
{
s=fun(q,front);
if(sum<s)
{
sum=s;
flag=front;
}
cnt++;
printf("\b\b\b \n");
}
front++;
}
return sum;
}
int main()
{
Queue q[1000];
cout<<"请输入矩阵的行数和列数:";
cin>>n>>m;
int s=0;
cout<<"请按行输入每个单元中的非负整数:"<<endl;
for(int i=0;i<n;i++)
{
for(int j=0;j<m;j++)
cin>>a[i][j];
}
cout << endl << "所有可能路径:" <<endl;
s=path(q,n,m);
cout <<endl;
cout<<"共有路径 "<<cnt<<" 条"<<endl;
cout<<"从左上角到右下角的所有路径中的最大值为 "<<s<<endl;
cout<<"该路径为:";
fun(q,flag);
printf("\b\b\b \n");
return 0;
}