二分搜索是一个分治算法。
个定已排好序的n个元素a[0:n-1],在这n个元素中找出某一特定的元素x。
二分搜索法的基本思路是把n个排好序的元素从中间分成大致相等的两部分,如果x==a[n/2],则找到x,如果x<a[n/2],在数组a的左半部分用相同的方法继续搜索,否则在右半部分搜索。
可以用以个递归的方法来实现二分搜索函数binary_search()。返回找到元素的下标。
#include <stdio.h>
int binary_search(int[], int, int, int);
int main()
{
int a[5000], i=0, x, location;
while(i<5000)
{
a[i] = i+1;
i++;
}
printf("Please input a number you want :\n");
scanf("%d", &x);
location = binary_search(a, 0, 4999, x);
if(location==-1)
printf("The number don't exist!\n");
else
{
printf("The number is %d", location+1);
switch((location+1)%10)
{
case 1 : printf("st");break;
case 2 : printf("nd");break;
case 3 : printf("rd");break;
default: printf("th");break;
}
printf(" in the array.\n");
}
return 0;
}
int binary_search(int a[], int left, int right, int x)
{
int mid = (left+right)/2;
if(left>right) return -1;
if(a[mid]==x) return mid;
if(x < a[mid])
return binary_search(a, left, mid-1, x);
else
return binary_search(a, mid+1, right, x);
}
binary_search()这个函数也可以用非递归的方法实现,但是参数表需要做一些改变。
int binary_search(int a[], int length, int n)//return index of "n" in arrary "a"
{
int left=0, right=length-1, mid;
while(left <= right)
{
mid = (left + right)/2;
if(n == a[mid]) return mid;
if(n > a[mid]) left = mid+1;
else right = mid-1;
}
return -1;
}
这个算法的时间复杂度为O(log n)
运行效果:
Please input a number you want :
4321
The number is 4321st in the array.