二分搜索

    二分搜索是一个分治算法。

    个定已排好序的n个元素a[0:n-1],在这n个元素中找出某一特定的元素x。

    二分搜索法的基本思路是把n个排好序的元素从中间分成大致相等的两部分,如果x==a[n/2],则找到x,如果x<a[n/2],在数组a的左半部分用相同的方法继续搜索,否则在右半部分搜索。

    可以用以个递归的方法来实现二分搜索函数binary_search()。返回找到元素的下标。

#include <stdio.h>

int  binary_search(int[], int, int, int);

int main()
{
    int a[5000], i=0, x, location;
    while(i<5000)
    {
        a[i] = i+1;
        i++;
    }
    printf("Please input a number you want :\n");
    scanf("%d", &x);
    location = binary_search(a, 0, 4999, x);
    if(location==-1)
        printf("The number don't exist!\n");
    else
    {
        printf("The number is %d", location+1);
        switch((location+1)%10)
        {
            case 1 : printf("st");break;
            case 2 : printf("nd");break;
            case 3 : printf("rd");break;
            default: printf("th");break;
        }
        printf(" in the array.\n");
    }
    return 0;
}

int binary_search(int a[], int left, int right, int x)
{
    int mid = (left+right)/2;
    if(left>right) return -1;
    if(a[mid]==x) return mid;
    if(x < a[mid]) 
        return binary_search(a, left, mid-1, x);
    else
        return binary_search(a, mid+1, right, x);
}

binary_search()这个函数也可以用非递归的方法实现,但是参数表需要做一些改变。

int  binary_search(int a[], int length, int n)//return index of "n" in arrary "a"
{
    int left=0, right=length-1, mid;
    while(left <= right)
    {
        mid = (left + right)/2;
        if(n == a[mid]) return mid;
        if(n > a[mid]) left = mid+1;
        else right = mid-1;
    }
    return -1;
}

这个算法的时间复杂度为O(log n)

运行效果:

Please input a number you want :
4321
The number is 4321st in the array.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值