《王者荣耀》是一款风靡全球的多人在线游戏,它不仅以其精美的画面和丰富的玩法吸引了大量玩家,还因其复杂的游戏逻辑而成为了程序员们研究的对象。通过深入分析《王者荣耀》的源码,我们可以更好地理解游戏开发的精髓、数据处理的技巧以及如何进行高效的游戏设计。
一、游戏架构的基本组成
在源码层面,王者荣耀的架构通常包括以下几个基本组件:
前端代码:处理用户界面(UI)和用户交互。
游戏逻辑:管理游戏规则和状态,如玩家行动、游戏时间、战斗机制等。
数据存储:记录玩家信息、游戏进度和其他关键数据。
用户首先向游戏服务器发起请求开始一局游戏,游戏服务器查询数据库以获取用户的相关资料,最后返回游戏界面给用户。这一过程展示了异步请求和响应的处理方式,清晰地反映了游戏的基本互动模式。
二、类的设计
我们将从几个核心类入手,这些类分别代表游戏中的“英雄”、“技能”和“战斗”。我们使用类图来描述它们之间的关系。
Hero类
Hero类将是我们游戏中的主角。它包含英雄的基本属性,如名字、血量、攻击力等,同时还有一个使用技能的方法。
class Hero:
def_init_(self,name,health,attack):
self.name = name
self.health = health
self.attack = attack
self.skill = None
def castSkill(self):
if self.skill:
self.skill.useSkill(target=self)
def takeDamage(self,damgage):
self.health -= damage
print(f"{self.name}受到了{damage}点伤害,剩余血量:{self.health}")
示例
创建一个英雄并施放技能:
hero1 = Hero("亚瑟",1000,150)
hero2 = Hero("李白",950,140)
print(f"{hero1.name}的初始血量:{hero1.health}")
三、整体流程
在实现王者荣耀的过程中,我们可以分为以下几个步骤:
1 连接设备并打开王者荣耀
2 进入游戏大厅
3 进入战斗并进行游戏操作
4 结束游戏并退出
5 检查游戏结果,如连胜次数、胜率等统计
.
连接设备并打开王者荣耀
首先,我们需要使用ADB工具连接设备并打开王者荣耀。
import os
#连接设备
os.system("adb connect 127.0.0.1:7555")
#打开王者荣耀
os.system("adb shell am staet -n com.tencent.tmgp.sgame/com.tencent.tmgp.sgame.SGnameMainActivity")
这段代码使用了os.system()函数来执行命令行指令。第一条指令是连接设备的指令,通过ADB连接虚拟设备。第二条指令是打开王者荣耀的指令。
进入游戏大厅
进入游戏大厅需要模拟点击操作。
import time
# 模拟点击 "大厅" 按钮
os.system("adb shell input tap x y")
time.sleep(2)
# 模拟点击"开始游戏" 按钮
os.system("adb shell input tap x y")
time.sleep(2)
这段代码使用了time.sleep()函数来添加延时,确保程序在点击按钮后等待页面加载完成。input tap x y指令用于模拟点击屏幕的指定位置。
四、战斗机制和角色技能
Skill类
Skill类负责定义技能的特性,包括技能伤害和冷却时间。此类具有一个useSkill方法,以便在战斗中对目标造成伤害。
class Skill:
def __init__(self, name, damage, cooldown):
self.name = name
self.damage = damage
self.cooldown = cooldown
def useSkill(self, target):
print(f"{target.name} 被 {self.name} 造成了 {self.damage} 点伤害")
target.takeDamage(self.damage)
示例 定义一个技能并施放:
skill1 = Skill("斩击", 200, 5)
hero1.skill = skill1
hero1.castSkill()
Battle类
Battle类用于定义战斗逻辑,包括两个英雄的对决过程。通过调用start()方法开始战斗。
class Battle:
def_init_(self,hero1,hero2):
self.hero1 = hero1
self.hero2 = hero2
def start(self):
print(f"{self.hero1.name}vs{self.hero2.name}战斗开始!")
while self.hero1.health > 0 and self.hero2.health > 0:
self.hero1.castSkill()
if self.hero2.health <= 0:
print(f"{self.hero2.name}被击败了!")
break
self.hero2.castSkill()
if self.hero1.health <= 0:
print(f"{self.hero1.name}被击败了!")
break
示例
启动一场战斗:
battle = Battle(hero1,hero2)
battle.start()
游戏逻辑实现
游戏的核心在于其逻辑系统,王者荣耀中复杂的战斗机制和角色技能的实现需要良好的代码结构。这里,我们用Python实现一个简单的英雄战斗模拟,展示技能和攻击的基本逻辑。
class Hero:
def_init_(self,name,attack,defense):
self.name = name
self.attack = attcak
self.defense = defense
def skill(self):
return f"{self.name}使用技能!"
def attack_enemy(self,enemy):
damage = self.attack - enemy.defense
return max(damage,0)
#示例
hero1 = Hero("赵云",30,10)
hero2 = Hreo("吕布",35,20)
#战斗过程
damage_to_enenmy = hero1.attack_enemy(hero2)
print(f"{hero1.name}对{hero2.name}造成了{damage_to_enemy}点伤害)
print(hero1.skill())
解读代码示例
在这个简单的示例中,我们定义了一个Hero类,包含了攻击、技能等基本属性与方法。在战斗中,攻击力扣除对手的防御力后得出伤害值。这样的设计模式能够让我们的英雄角色扩展性较强,方便添加新技能和属性。
进入战斗并进行游戏操作
进入战斗后,我们可以使用一系列操作来控制角色。
# 模拟点击技能按钮
os.system("adb shell input tap x y")
time.sleep(2)
# 模拟滑动屏幕
os.system("adb shell input swipe x1 y1 x2 y2 duration")
time.sleep(2)
#模拟点击普攻按钮
os.system("adb shell input tap x y")
time.sleep(2)
这段代码使用了input swipe x1 y1 x2 y2 duration指令来模拟滑动屏幕的操作,可以用于移动角色或者释放技能。input tap x y指令用于模拟点击普攻按钮。
结束游戏并退出
游戏结束后,我们需要关闭游戏并退出。
# 模拟点击"退出游戏"按钮
os.system("adb shell input tap x y")
time.sleep(2)
#关闭王者荣耀
os.system("adb shell am force-stop com.tecent.tmgp.sgame")
这段代码使用了am force-stop指令来关闭王者荣耀。
检查游戏结果
最后,我们可以检查游戏的结果,并记录统计信息。
#检查连胜次数
win_count = os.popen("adb shell cat/sdcard/win_count.txt").read()
print("连胜次数:" + win_count)
#检查胜率
win_rate = os.popen("adb shell cat/sdcard/win_rate.txt").read()
print("胜率:" + win_rate)
这段代码通过读取设备上的文件来获取游戏的统计信息。
算法设计
我们可以设计一个简单的决策树算法来决定何时攻击。我们使用 sklearn 库来实现这一算法。
from sklearn.tree import DecisionTreeClassfier
# 简单分类算法设置
X = features.valuesef
y = ['attack','defense']#假设的目标
#创建决策树模型
model = DecisionTreeClassifier()
model.fit(X,y)
实现AI 我们编写一个简单的AI类来实现游戏中AI的决策。
class AI:
def_init_(self,model):
self.model = model
def make_decision(self,hero_stats):
#使用模型进行决策
decision = self.model.predict([hero_stats])
return decision
#实例化AI
ai = AI(model)
decision = ai.make_decision([150,100])#用某个英雄的属性
print(f"AI decision:{decision}")
测试和优化
最后,我们需要测试AI,并根据测试结果优化AI的算法和参数。你可以将不同的策略放入决策树中,评估每种策略的效果。
#假设进行一些简单的测试
for hero in df_heros,index:
stats = df_heros.loc[hero,['attack','defense']].values
print(f"{hreo}:{ai.make_decision(stats)}")