数字图像处理
文章平均质量分 96
ingy
这个作者很懒,什么都没留下…
展开
-
基于数学形态学的图像边缘提取方法
Github地址:传统的边缘提取方法是基于局部梯度的,梯度边缘检测算子详述参考:低层次的图像特征提取——边缘检测在基于梯度的经典边缘检测算子中,以Roberts、Prewitt、Sobel、Laplacian算子最为经典和常用。它们都是基于像素的处理方法,具有形式简单、易于实现的优点,但都有定位精度较差、对噪声敏感、准确性不高的缺点,而且被检测出来的边缘通常是不连续和不规则的。Huechel最早提出亚像素边缘检测技术,现已发展为插值、矩法和最小二乘法等多种检测方法。插值法计算时间相对较短,但原创 2020-06-03 17:45:02 · 9502 阅读 · 1 评论 -
使用BitLocker加密磁盘
第一步、在控制面板中点启用BitLocker第二步、设置解锁密码,用于之后的解锁第三步、保存密钥到本地文件第四步、选择加密策略第五步、如果是加密本地磁盘,则选择新加密模式即可第六步、开始加密完成后,磁盘上面多了一把锁,但是是打开的状态。第七步、以管理员身份开打命令行,并运行命令加密磁盘manage-bde -lock -forcedismount E:(注意将“E:”改成相应的要加密的盘符)...原创 2020-06-02 18:33:47 · 3298 阅读 · 0 评论 -
数字图像处理——边缘检测(低层次的图像特征提取)
综述底层次的特征是不需要任何形状信息(空间关系的信息)就可以从图像中自动提取的特征,这样看来,阈值方法就是作为点处理的一种低层次特征提取方式,所有低层次方法都可以作为高层次特征提取的预处理,从而在图像中找到形状。边缘检测相当于漫画家的草稿,了解频域将有利于分析低层次特征提取。角点检测,原理上是检测线条上曲率突变的点,是一种局部特征检测。所以低层次的特征提取包括以下部分:一阶边缘...原创 2019-12-18 18:00:42 · 7448 阅读 · 0 评论 -
数字图像处理——知识整理
为什么要用8个亮度级来描述图像?模拟摄像机的信噪比约为45dB,每一位是6dB,所以8位可以包括有效范围,选择8位像素的另一个好处是:方便把像素存储成字节;而且,8位的A/D转换器最便宜。怎么定义合适的图像大小N?即分辨率?N太小导致图像锯齿化严重,N太大会导致存储空间的增大,所以需要选择合适的分辨率对图像进行存储,但是你需要了解数字信号处理理论。为什么要进行傅里叶变换?将信号...原创 2019-12-18 16:06:06 · 2027 阅读 · 0 评论 -
数字图像处理——灰度变换(点运算)
目录基本的灰度变换函数图像反转对数变换幂律(伽马)变换分段线性变换灰度级分层二值化最大最小值拉伸空间域处理是直接对像素进行操作的方法,这是相对于频率域处理而言的。空间域处理主要分为两大类:灰度变换和空间滤波。灰度变换在图像单个像素上操作,主要以对比度和阈值处理为目的。空间滤波涉及改善性能的操作,通过像元领域来处理。空间域处理均可由下式表达:表示f...原创 2019-08-18 22:24:23 · 3835 阅读 · 0 评论 -
数字图像处理——LoG算子
Harris算子的一个缺点是不具有尺度不变性,所以引入了另一种检测算子:高斯拉普拉斯算子。LoG算子 前面提到过高斯一阶导,其作用是检测边缘(边缘区域高斯一阶导数取得极值),那么对一阶导数继续求导得到二阶导数,可想而知,一阶导数的极值点就是二阶导数的0点。进而可以通过寻找二阶导数的0点(亦或是接近于0的点),去寻找图片的梯度(边缘)。 拉普拉斯算子的表示式:...原创 2019-08-31 18:03:23 · 10202 阅读 · 0 评论 -
数字信号处理中均值、方差、均方值、均方差计算和它们的物理意义
1 均值均值表示信号中直流分量的大小,用E(x)表示。对于高斯白噪声信号而言,它的均值为0,所以它只有交流分量。 2 均值的平方均值的平方,用{E(x)}^2表示,它表示的是信号中直流分量的功率。3 均方值均方值表示信号平方后的均值,用E(...转载 2019-09-02 11:21:41 · 4842 阅读 · 0 评论 -
[DIP] 引导滤波(guided Filter)
引导滤波算法是一种可以保持边缘的一种滤波算法。引导滤波之所以叫这个名字,是因为算法在进行滤波时需要一幅引导图像,引导图像可以是另外单独的图像,也可以是输入图像本身,当引导图为输入图像本身时,引导滤波就成为一个保持边缘的滤波操作。引导滤波可以用于降噪、细节平滑、HDR压缩、抠图、去雾以及联合采样等领域。线性旋转变化滤波过程中,某像素点的输出为:...转载 2019-09-11 11:24:33 · 1285 阅读 · 0 评论 -
数字图像处理——空间域滤波
平滑滤波用于模糊处理和降低噪声。模糊处理常用于预处理任务中,如在目标提取之前去除图像中的一些琐碎细节,以及桥接直线或曲线的缝隙。通过线性或非线性平滑滤波也可降低噪声。目录线性滤波均值滤波(均值平滑)高斯滤波(高斯平滑)非线性滤波中值滤波(中值平滑)线性滤波均值滤波(均值平滑)平均值或加权平均值 ...原创 2019-08-18 21:34:20 · 2246 阅读 · 0 评论