TensorFlow官方教程探坑1:入门教程和基本图像分类

tensorflow安装https://zhuanlan.zhihu.com/p/34602355

可能好用?

import python as tf

这个命令可以运行就算安装好了

--------------------------------------------------------------------------

Google Tensorflow 官方教程地址https://www.tensorflow.org/tutorials

本文只作为官方文档的学习笔记和补充

---------------------------------------------------------------------------

1.面向初学者的快速入门没有任何问题,直接复制代码跑就可以了

2.Keras机器学习基础知识

2.1基本图像分类

# Helper libraries
import numpy as np
import matplotlib.pyplot as plt

这部分代码可能报错No module named 'matplotlib',解决方法就是用pip安装一下matplotlib

参考这篇文章https://blog.csdn.net/weixin_41640583/article/details/86552766

1. 激活tensorflow环境:【activate tensorflow】

2. 安装matplotlib:【pip install matplotlib】

model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dense(10, activation='softmax')
])

这部分代码有些需要知道的:relu是一个激活函数,类似sigmoid。https://blog.csdn.net/dhaiuda/article/details/100079475

softmax是一个分类函数,和logistic function的区别是:如果分类是互斥的,那么softmax更好,如果不是,logistic function更好https://blog.csdn.net/bitcarmanlee/article/details/82320853

model.fit(train_images, train_labels, epochs=10)

test_loss, test_acc = model.evaluate(test_images,  test_labels, verbose=2)
print('\nTest accuracy:', test_acc)

训练和测试出来的准确性有一点差异,训练时的准确性大概0.9左右,测试时0.87左右,这个差异的overfitting导致的。官方原文:It turns out that the accuracy on the test dataset is a little less than the accuracy on the training dataset. This gap between training accuracy and test accuracy represents overfitting

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值