@每日一篇小论文----arXiv:1602.07868v3
Weight Normalization
我们提出权重归一化:神经网络中权重向量的重新参数化,将那些权重向量的长度与它们的方向分离。通过以这种方式重新参数化,我们改进了优化问题的条件,并加快了随机梯度下降的收敛速度。我们的重新参数化受到批量标准化的启发,但不会在批处理中的示例之间引入任何依赖关系。这意味着我们的方法也可以成功地应用于诸如LSTM之类的递归模型以及诸如深度强化学习或生成模型的噪声敏感应用,其中批量归一化不太适合。虽然我们的方法更简单,但它仍然提供了全批量标准化的大部分加速。此外,我们的方法的计算开销较低,允许在相同的时间内采取更多的优化步骤。我们证明了我们的方法在监督图像识别,生成建模和深度强化学习中的应用的有用性。
核心思想
对方向权重做归一化,并添加scalar,
即: w = g ∣ ∣ v ∣ ∣ v w = \frac{g}{||v||}v w=∣∣v∣∣gv
意义
减弱因数据集不平均,而对于权重产生的影响
参考程序
class _WNConv(convolutional_layers._Conv):
def __init__(self