每日一篇小论文 ---- Weight Normalization

权重归一化是一种神经网络权重向量的重新参数化方法,旨在分离权重向量的长度和方向,改善优化条件,提高随机梯度下降的收敛速度。与批量标准化不同,它不引入批处理示例间的依赖,适用于递归模型和噪声敏感应用。该方法简化了计算,允许在相同时间内进行更多优化步骤,且在多种任务中表现出实用性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

@每日一篇小论文----arXiv:1602.07868v3

Weight Normalization

我们提出权重归一化:神经网络中权重向量的重新参数化,将那些权重向量的长度与它们的方向分离。通过以这种方式重新参数化,我们改进了优化问题的条件,并加快了随机梯度下降的收敛速度。我们的重新参数化受到批量标准化的启发,但不会在批处理中的示例之间引入任何依赖关系。这意味着我们的方法也可以成功地应用于诸如LSTM之类的递归模型以及诸如深度强化学习或生成模型的噪声敏感应用,其中批量归一化不太适合。虽然我们的方法更简单,但它仍然提供了全批量标准化的大部分加速。此外,我们的方法的计算开销较低,允许在相同的时间内采取更多的优化步骤。我们证明了我们的方法在监督图像识别,生成建模和深度强化学习中的应用的有用性。

核心思想

对方向权重做归一化,并添加scalar,
即: w = g ∣ ∣ v ∣ ∣ v w = \frac{g}{||v||}v w=vgv

意义

减弱因数据集不平均,而对于权重产生的影响

参考程序

class _WNConv(convolutional_layers._Conv):
    def __init__(self
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值