A. Split the Multiset
思路:
最优的策略是每次操作分出 k−1𝑘−1 个 1,然后考虑最后是否会剩下一个单独的 1。
代码:
#include<bits/stdc++.h>
using namespace std;
#define N 1000005
typedef long long ll;
typedef unsigned long long ull;
ll n, m, t, h, k;
ll a, b, c;
ll ans, num, sum1=0, sum, sum2=0, cnt, maxx, minn = 1e9;
ll dp[N], f1[N], f2[N];
ll mp[105][105];
bool flag, vis[N];
string s;
void solve() {
ll n, k, sum = 0;
cin >> n >> k;
while (n > k) {
n -= (k - 1);
sum++;
}
if (n != 1) sum++;
cout << sum << endl;
}
int main()
{
cin >> t;
while (t--) {
solve();
}
return 0;
}
B. Make Majority
思路:
首先对全 0 连续段进行操作使它们均变为一个 0,先尽可能减少 0 的个数,然后判断是否有 c1>c0𝑐1>𝑐0 即可.
代码:
#include<bits/stdc++.h>
using namespace std;
#define N 1000005
typedef long long ll;
typedef unsigned long long ull;
ll n, m, h, k;
ll a, b, c;
ll ans, num, sum1=0, sum, sum2=0, cnt, maxx, minn = 1e9;
ll dp[N], f1[N], f2[N];
ll mp[105][105];
bool flag, vis[N];
string s;
string t;
void solve() {
ll n, k, sum = 0;
cin >> n >> k;
while (n > k) {
n -= (k - 1);
sum++;
}
if (n != 1) sum++;
cout << sum << endl;
}
int main()
{
cin >> k;
while (k--) {
s.clear();
t.clear();
cin >> n >> s;
for (int i = 0; i < s.size(); ) {
if (s[i] != '0') {
t += s[i];
i++;
}
else {
int j = i + 1;
t += s[i];
while (j < s.size() && s[j] == '0') {
j++;
}
i = j;
}
}
ll ans1 = 0;
ll ans2 = 0;
for (auto it : t) {
if (it == '0') {
ans1++;
}
else {
ans2++;
}
}
if (ans2 > ans1) {
cout << "Yes" << endl;
}
else {
cout << "No" << endl;
}
}
return 0;
}
C. Increasing Sequence with Fixed OR
思路:
要构造的数组严格递增,那么最后一个位置一定可以放n,为了保证严格单调递增,直接低位枚举n的二进制位即可,假设当前枚举到第i位时n的二进制位为1,那么把n-(1<<i)加入答案即可
代码:
#include<bits/stdc++.h>
using namespace std;
#define N 1000005
typedef long long ll;
typedef unsigned long long ull;
ll n, m, h, k;
ll a, b, c;
ll ans, num, sum1=0, sum, sum2=0, cnt, maxx, minn = 1e9;
ll dp[N], f1[N], f2[N];
ll mp[105][105];
bool flag, vis[N];
string s;
string t;
void solve() {
cin >> n;
ans = 0;
if (n - (n & -n) == 0)
{
cout << 1 << endl << n << endl;
return;
}
for (int i = 60; i >= 0; i--) {
if ((n >> i) & 1) {
++ans;
f1[ans] = n - pow(2, i);
}
}
cout << ans + 1 << endl;
sort(f1 + 1, f1 + 1 + ans);
for (int i = 1; i <= ans; i++)
cout<< f1[i] << " ";
cout << n << endl;
}
int main()
{
cin >> k;
while (k--) {
solve();
}
return 0;
}