题目描述
给定一个多项式 ( a x + b y ) k (ax+by)^k (ax+by)k,请求出多项式展开后 x n y m x^ny^m xnym项的系数.
输入格式
共一行,包含5个整数,分别为 a , b , k , n , m , a,b,k,n,m, a,b,k,n,m,每两个整数之间用一个空格隔开.
输出格式
出共1行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007取模后的结果.
样例输入
1 1 3 1 2
样例输出
3
数据规模与约定
对于30%的数据,有
0
≤
k
≤
10
0\leq k\leq 10
0≤k≤10;
对于50%的数据,有
a
=
1
,
b
=
1
a=1,b=1
a=1,b=1 ;
对于100%的数据,有
0
≤
k
≤
1000
,
0
≤
n
,
m
≤
k
,
0\leq k\leq 1000,0\leq n,m\leq k,
0≤k≤1000,0≤n,m≤k,且
n
+
m
=
k
,
0
≤
a
,
b
≤
1000000
n+m=k,0\le a,b\le 1000000
n+m=k,0≤a,b≤1000000.
分析
看到形如 ( x + y ) n (x+y)^n (x+y)n的形式的题,马上想到杨辉三角.由杨辉三角,可以很轻易地得到 x n y m x^ny^m xnym前面的常数,同时,我们也可以知道, a , b a,b a,b的指数是和 x , y x,y x,y是一样的,又因为 k k k很大,不难想到快速幂的算法.至于快速幂,网上的文章很多,这里就不过多赘述.
代码
#include <iostream>
#include <cmath>
#include <cstdio>
using namespace std;
long long s[1010][1010];
int a,b,k,n,m;
long long ans;
long long fast_pow(int x,int y,int mod) {//快速幂
long long base=x,t=1;//注意!!10006*10006可能会爆int
for (;y;base=base*base%mod,y>>=1)
if (y&1) t=t*base%mod;
return t;
}
int main() {
scanf("%d%d%d%d%d",&a,&b,&k,&n,&m);
s[1][1]=1;//计算杨辉三角
for (int i = 2;i <= k+1;i++) {
for (int j = 1;j <= i;j++) {
s[i][j]=(s[i-1][j]+s[i-1][j-1])%10007;
}
}
ans=(s[k+1][k-n+1]*fast_pow(a,n,10007)*fast_pow(b,m,10007))%10007;
printf("%lld",ans);
return 0;
}