「NOIP2011」 计算系数 - 组合数

题目描述

给定一个多项式 ( a x + b y ) k (ax+by)^k (ax+by)k,请求出多项式展开后 x n y m x^ny^m xnym项的系数.

输入格式

共一行,包含5个整数,分别为 a , b , k , n , m , a,b,k,n,m, a,b,k,n,m,每两个整数之间用一个空格隔开.

输出格式

出共1行,包含一个整数,表示所求的系数,这个系数可能很大,输出对10007取模后的结果.

样例输入

1 1 3 1 2

样例输出

3

数据规模与约定

对于30%的数据,有 0 ≤ k ≤ 10 0\leq k\leq 10 0k10;
对于50%的数据,有 a = 1 , b = 1 a=1,b=1 a=1,b=1 ;
对于100%的数据,有 0 ≤ k ≤ 1000 , 0 ≤ n , m ≤ k , 0\leq k\leq 1000,0\leq n,m\leq k, 0k1000,0n,mk, n + m = k , 0 ≤ a , b ≤ 1000000 n+m=k,0\le a,b\le 1000000 n+m=k,0a,b1000000.

分析

看到形如 ( x + y ) n (x+y)^n (x+y)n的形式的题,马上想到杨辉三角.由杨辉三角,可以很轻易地得到 x n y m x^ny^m xnym前面的常数,同时,我们也可以知道, a , b a,b a,b的指数是和 x , y x,y x,y是一样的,又因为 k k k很大,不难想到快速幂的算法.至于快速幂,网上的文章很多,这里就不过多赘述.

代码

#include <iostream>
#include <cmath>
#include <cstdio>
using namespace std;
long long s[1010][1010];
int a,b,k,n,m;
long long ans;
long long fast_pow(int x,int y,int mod) {//快速幂
	long long base=x,t=1;//注意!!10006*10006可能会爆int
	for (;y;base=base*base%mod,y>>=1)
		if (y&1) t=t*base%mod;
	return t;
}
int main() {
	scanf("%d%d%d%d%d",&a,&b,&k,&n,&m);
	s[1][1]=1;//计算杨辉三角
	for (int i = 2;i <= k+1;i++) {
		for (int j = 1;j <= i;j++) {
			s[i][j]=(s[i-1][j]+s[i-1][j-1])%10007;
		}
	}
	ans=(s[k+1][k-n+1]*fast_pow(a,n,10007)*fast_pow(b,m,10007))%10007;
	printf("%lld",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值