「HNOI2008」 玩具装箱 - 斜率优化Dp

题目大意

有n个物品,每个物品有一个长度C_i,现需将其分成若干组,每组内编号必须是连续的,将i~j分为一组的长度是

\small x=j-i+\sum_{k=i}^jC_k

费用为(x-L)^2,其中L为给定常量。求最小费用\small (1\le n\le 50000,1\le L,C_i\le 10^7)

分析

看到题目,想也没想就敲了一个时间\small N^3,空间\small N^2的暴力Dp,\small f[i][j]为合并区间\small [i,j]的最小费用,则

\small f[i][j]=\min((j-i+sum[j]-sum[i-1])^2,min(f[i][k]+f[k+1][j]))

当然过不了。。。

仔细一想,第一维可以省略,\small f[i]表示前\small i个物品合并的最小费用,则

\small f[i]=\min_{0\le j<i}(f[j]+(i-j-1+sum[i]-sum[j]-L)^2)

将时间和空间都降了一个数量级,但对于\small N\le 50000的数据范围,\small N^2的复杂度还是不够。考虑Dp优化。

注意到方程中有与\small i,j有关的乘积项,考虑斜率优化。

\small C=L-1,g[i]=sum[i]+i,则方程可化为

\small f[i]=\min(f[j]+(g[i]-g[j]-C)^2)

若存在\small k,j,k<j<i且在j处比在k处取值更优,则有下面的不等式

\small \small f[j]+(g[i]-g[j]-C)^2< f[k]+(g[i]-g[k]-C)^2

解得

\small \dfrac{(f[j] + g[j]^2 - 2 \times g[j]\times C) - (f[k] + g[k]^2 - 2 \times g[k]\times C)}{2 \times (g[j] - g[k])} > g[i]

这说明若上式成立,则j处优于k处。

然后就可以维护一个单调队列,使得能在\small O\left(N\right)的时间内解决。具体见代码。

代码

#include <bits/stdc++.h>
using namespace std;
#define p(x) ((x)*(x))
int n,L;
long long a[50005],g[50005];
long long f[50005],c;
int q[50005];
int head,tail;
double calc(int k,int j) {
	return ((f[j]+p(g[j])+2.0*c*g[j])-(f[k]+p(g[k])+2.0*c*g[k]))/(2.0*(g[j]-g[k]));
}
int main() {
	scanf("%d%d",&n,&L);
	c=L+1;
	for (int i=1;i<=n;i++)
		scanf("%lld",&g[i]),g[i]+=g[i-1];
	for (int i=1;i<=n;i++)
		g[i]+=i;
	head=1;
	tail=0;
	q[++tail]=0;
	for (int i=1;i<=n;i++) {
		while (head<tail&&calc(q[head],q[head+1])<=g[i]) head++;
		//由于推出的不等式
		//若calc(q[head],q[head+1])<=g[i],说明head+1,比head更优,直接出队
		int t=q[head];
		f[i]=f[t]+p(g[i]-g[t]-c);
		while (head<tail&&calc(q[tail],i)<calc(q[tail-1],q[tail])) tail--;
		q[++tail]=i;
	}
	printf("%lld",f[n]);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值