题目描述
为庆祝BSOI生日及鼓励广大OIER多切题,管理员xinyue决定推出一项奖励措施:他按照每道题目的难度给其赋了一个分值,第一次AC这道题目的时候作者会得到这道题目的分值。假设大牛叉叉嗯AC了n(n <= 100,000)道题目,它们的分值依次为a1,a2,a3,...,an。叉叉嗯就可以按照顺序把它们分成若干段提交给xinyue,假设某一段从i+1到j,它们的分值和为x,那么叉叉嗯可以得到的奖励是x*i-T,其中-T是因为xinyue嫌你提交的太多,他比较烦。叉叉嗯大牛希望得到的奖励之和最大,但她已经AC了太多题目,懒得再编程了。这个问题就交给你,大牛希望你能好好解决。
分析
考虑Dp。设为前i道题获得的最大奖励,则
时间复杂度为O(n^2),展开其中会有ij的乘积项,考虑斜率优化Dp。
对于,若在j的决策优于k的决策,则有如下不等式:
,移项得:
所以,维护一个特殊的单调队列维护即可。
代码
#include <cstdio>
#include <iostream>
using namespace std;
int n,t,a[100005];
long long sum[100005],f[100005],q[100005],head,tail;
long long read() {
long long s=0;
char ch=getchar();
int f=1;
while (ch<'0'||ch>'9') f=(ch=='-'?-1:1),ch=getchar();
while (ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
return s*f;
}
void write(long long s) {
if (s<0) {
putchar('-');
write(-s);
return;
}
if (s>9) write(s/10);
putchar(s%10+'0');
}
long double s(int j,int k) {
return ((f[j]-sum[j]*j)-(f[k]-sum[k]*k))/((long double)(k-j));
}
int main() {
n=read();
t=read();
for (int i=1;i<=n;i++) {
a[i]=read();
sum[i]=sum[i-1]+a[i];
}
f[0]=0;
head=tail=1;
q[head]=0;
for (int i=1;i<=n;i++) {
while (head<tail&&(s(q[head],q[head+1])<=sum[i])) head++;
f[i]=f[q[head]]+(sum[i]-sum[q[head]])*q[head]-t;
while (head<tail&&s(q[tail-1],q[tail])>=s(q[tail],i)) tail--;
q[++tail]=i;
}
write(f[n]);
return 0;
}