「BSOJ1030」 最大奖励 - 斜率优化Dp

题目描述

为庆祝BSOI生日及鼓励广大OIER多切题,管理员xinyue决定推出一项奖励措施:他按照每道题目的难度给其赋了一个分值,第一次AC这道题目的时候作者会得到这道题目的分值。假设大牛叉叉嗯AC了n(n <= 100,000)道题目,它们的分值依次为a1,a2,a3,...,an。叉叉嗯就可以按照顺序把它们分成若干段提交给xinyue,假设某一段从i+1到j,它们的分值和为x,那么叉叉嗯可以得到的奖励是x*i-T,其中-T是因为xinyue嫌你提交的太多,他比较烦。叉叉嗯大牛希望得到的奖励之和最大,但她已经AC了太多题目,懒得再编程了。这个问题就交给你,大牛希望你能好好解决。

分析

考虑Dp。设f[i]为前i道题获得的最大奖励,则

f[i]=\max_{0\le j<i}\{f[j]+(sum[i]-sum[j])\times i-t\}

时间复杂度为O(n^2),展开其中会有ij的乘积项,考虑斜率优化Dp。

对于j,k,0\le j<k<i,若在j的决策优于k的决策,则有如下不等式:

f[j]+(sum[i]-sum[j])\times i>f[k]+(sum[i]-sum[k])\times i,移项得:

\dfrac{((f[j]-sum[j]*j)-(f[k]-sum[k]*k)}{k-j}\le sum[i]

所以,维护一个特殊的单调队列维护即可。

代码

#include <cstdio>
#include <iostream>
using namespace std;
int n,t,a[100005];
long long sum[100005],f[100005],q[100005],head,tail;
long long read() {
	long long s=0;
	char ch=getchar();
	int f=1;
	while (ch<'0'||ch>'9') f=(ch=='-'?-1:1),ch=getchar();
	while (ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
	return s*f;
}
void write(long long s) {
	if (s<0) {
		putchar('-');
		write(-s);
		return;
	}
	if (s>9) write(s/10);
	putchar(s%10+'0');
}
long double s(int j,int k) {
	return ((f[j]-sum[j]*j)-(f[k]-sum[k]*k))/((long double)(k-j));
}
int main() {
	n=read();
	t=read();
	for (int i=1;i<=n;i++) {
		a[i]=read();
		sum[i]=sum[i-1]+a[i];
	}
	f[0]=0;
	head=tail=1;
	q[head]=0;
	for (int i=1;i<=n;i++) {
		while (head<tail&&(s(q[head],q[head+1])<=sum[i])) head++;
		f[i]=f[q[head]]+(sum[i]-sum[q[head]])*q[head]-t;
		while (head<tail&&s(q[tail-1],q[tail])>=s(q[tail],i)) tail--;
		q[++tail]=i;
	}
	write(f[n]);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值