Python Pandas 对每行(column)进行运算——以Pearson相关系数为例

本文通过一个案例展示了如何使用Python的Pandas库计算DataFrame中每行的Pearson相关系数,涉及数据标准化、均值计算、标准差计算等步骤。重点介绍了Pandas的Series和DataFrame操作,以及axis参数的使用。
摘要由CSDN通过智能技术生成

Python Pandas 对每行(column)进行运算——以Pearson相关系数为例

在统计学中,皮尔逊积矩相关系数(Pearson’s r)用于度量两个变量X和Y之间的相关程度(线性相关),其值介于-1与1之间。系数为正,表示 Y 随着 X 的增加而增加;系数为负,表示Y 随着 X 的增加而减少。
r 可由(Xi, Yi)样本点的标准分数均值估计,公式为:

r = 1 n − 1 ∑ i = 1 n ( x i − x ˉ σ x ) ( y i − y ˉ σ y ) r = \frac {1} {n-1} \sum_{i=1}^{n}(\frac{ x_i- \bar x} {\sigma x})(\frac{y_i- \bar y}{\sigma y}) r=n11i=1n(σxxi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值