题目描述:
给定一个非空二叉树,返回其最大路径和。
本题中,路径被定义为一条从树中任意节点出发,达到任意节点的序列。该路径至少包含一个节点,且不一定经过根节点。
示例 1:
输入: [1,2,3] 1 / \ 2 3 输出: 6
示例 2:
输入: [-10,9,20,null,null,15,7] -10 / \ 9 20 / \ 15 7 输出: 42
思路:我们可以用递归的思路来解决这道题。对于每一个根节点来说,经过该点的最大路径是max(该点的值,该点的值加左子树的最大路径,该点的值加右子树的最大路径,该点的值加左右子树最大路径的和),得到的应该是这些值中的最大值,但是当递归的作为子树的最大值返回给父节点时,我们返回的应该是max(该点的值,该点的值加左子树的最大路径,该点的值加右子树的最大路径),不应该加上左右节点之和,因为这样的话,得到的就是如果作为子树返回的是,如果按照左中右结果返回,那么从根节点必须通过回溯才能走完这个子树,这一点需要注意。
代码:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int backTrack(TreeNode* root, int &maxPath){
int left = 0, right = 0;
if(NULL != root->left) left = backTrack(root->left, maxPath);
if(NULL != root->right) right = backTrack(root->right, maxPath);
maxPath = max(maxPath, max(max(left + right + root->val, root->val), max(left, right) + root->val));
return max(max(left, right) + root->val, root->val);
}
int maxPathSum(TreeNode* root) {
if(NULL == root) return 0;
int maxPath = INT_MIN;
int max = backTrack(root, maxPath);
return maxPath;
}
};