前两天写了点关于python数据结构的小程序,今天就整个稍微难点的(自己感觉)----- 二叉树。依稀记得当年,师兄教我这个东西,我怎么都感觉别扭,现在自己写出来,才感觉时间过的真快。不废话了,直接上代码:
# !/usr/bin/env python
# -*- coding : utf-8 -*-
class Node:
def __init__(self, data, root,left, right):
self.data = data
self.root = root
self.left = left
self.right = right
class BinaryTree:
def __init__(self, root = None):
self.root = root
def create(self, pList): #创建二叉树
#生成父节点
self.root = Node (pList[0],None,None, None)
for i in pList[1:]: #使用insert方法帮助创建
self.insert (i, self.root)
#由于python表面不支持重载,故采用默认参数
def insert(self,data,root_node = None):
if root_node.data == data: #插入数据与节点数据相等时,直接返回
return
if root_node.data > data: #节点数据大于插入数据
if root_node.left is None:
root_node.left = Node(data, root_node, None, None)
else:
return self.insert( data,root_node.left)
if root_node.data < data: #节点数据小于插入数据
if root_node.right is None:
root_node.right = Node(data, root_node, None, None)
else:
return self.insert( data,root_node.right)
def delete(self, data): #删除数据,比其他语言要简单的多
tmp_node = self.search(data, self.root)
if tmp_node == self.root:
tmp_node = None
else:
tmp1_node = tmp_node.root #获得当前节点的父节点,仅需将父节点指向当前节点的引用(left/right)设为None即可
if tmp1_node.left == tmp_node:
tmp1_node.left = None
elif tmp1_node.right == tmp_node:
tmp1_node.right = None
def search(self, data, root_node = None): #主要为其他函数服务,可返回数据data的节点
if self.isEmpty():
print "The BinaryTree is empty!\n The data you want to search is not in this Tree!"
if root_node.data == data:
return root_node
if root_node.data > data:
if root_node.left is None:
print "The data you want to search is not in this Tree!"
else:
return self.search(data, root_node.left)
if root_node.data < data:
if root_node.right is None:
print "The data you want to search is not in this Tree!"
else:
return self.search(data, root_node.right)
def pre_order(self, root_node = None): #前序遍历
if root_node is not None:
print root_node.data
self.pre_order(root_node.left)
self.pre_order(root_node.right)
def mid_order(self, root_node = None): #中序遍历
if root_node is not None:
self.mid_order(root_node.left)
print root_node.data
self.mid_order(root_node.right)
def post_order(self, root_node = None): #后序遍历
if root_node is not None:
self.post_order(root_node.left)
self.post_order(root_node.right)
print root_node.data
def level_order(self, root_node = None): #层次遍历!!!
node_list = []
tmp_node = root_node
while tmp_node is not None:
print tmp_node.data
if tmp_node.left is not None:
node_list.append(tmp_node.left)
if tmp_node.right is not None:
node_list.append(tmp_node.right)
if len(node_list) == 0:
tmp_node = None
else:
tmp_node = node_list[0]
del node_list[0]
def isEmpty(self):
return self.root is None
#主函数测试使用
if __name__ == "__main__":
BT = BinaryTree()
BT.create([6,8,4,7,2,0,3,5,1,9])
BT.insert(20, BT.root)
BT.insert(19, BT.root)
BT.insert(21, BT.root)
BT.insert(17, BT.root)
BT.insert(24, BT.root)
BT.insert(15, BT.root)
## print "pre_order:"
## BT.pre_order(BT.root)
## print "mid_order:"
## BT.mid_order(BT.root)
## print "post_order:"
## BT.post_order(BT.root)
print "level_order:"
BT.level_order(BT.root)
BT.delete(20)
BT.level_order(BT.root)
代码比前面能稍微好点不,至少我加了点注释哈。老实说,二叉树使用递归算法,真算得上逻辑清楚,代码简单,但是递归总有递归的坏处,比如递归层次太深,反而影响程序的运行效率,当然这是题外话。今天的小程序,我用了点小心思,因为前两篇文章中都使用任何模块(也就是import),由于大多数人在二叉树的层次遍历都需要使用一种数据结构-----队列(queue),python中当然也有,就算没有,咱昨天也实现了。只想说,为了不使用import,我选择了python的list(是不是有点作弊的感觉)。写到这,我突然想起了C、C++中二叉树的删除(delete)操作时,又是一身冷汗啊,一般步骤:先删左子树,依次右子树,最后删除当前节点(当然了,递归不可少),这主要是每个节点占据的资源都需要自己手动释放,python实现这个操作,可不只是简单那么一点(自己感觉)。老实说,用惯了指针的人都是大神啊!
刚开始使用博客这个高大上的东西,整的话都不会说了,但愿自己勤而不辍,每天一点点,我倒想看看天道酬勤是个什么境界!!!