Python 二叉树

一、二叉树的基本概念
二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)
二、二叉树的性质(特性)
性质1: 在二叉树的第i层上至多有2^(i-1)个结点(i>0)
性质2: 深度为k的二叉树至多有2^k - 1个结点(k>0)
性质3: 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;
性质4:具有n个结点的完全二叉树的深度必为 log2(n+1)
性质5:对完全二叉树,若从上至下、从左至右编号,则编号为i 的结点,其左孩子编号必为2i,其右孩子编号必为2i+1;其双亲的编号必为i/2(i=1 时为根,除外)
三、代码实现建立二叉树(层次)

#coding:utf-8

class Node(object):
    """节点"""
    def __init__(self, item):
        self.elem = item
        self.lchild=None
        self.rchild=None
class Tree(object):
    """二叉树"""
    def __init__(self):
        self.root = None

    def add(self, item):
        node = Node(item)
        if self.root is None :
            self.root = node
            return
        queue = [self.root]   #用队列来存储节点
        while queue : #队列不为空,就始终能取出结点
            cur_node = queue.pop(0)
            if cur_node.lchild is None:
                cur_node.lchild = node
                return
            else:
                queue.append(cur_node.lchild)
            if cur_node.rchild is None:
                cur_node.rchild = node
                return
            else:
                queue.append(cur_node.rchild)
    def breadth_travel(self):
        queue = [self.root]
        if self.root is None:
            return
        while queue:
            cur_node = queue.pop(0)
            print(cur_node.elem)
            if cur_node.lchild is not None:
                queue.append(cur_node.lchild)
            if cur_node.rchild is not None:
                queue.append(cur_node.rchild)
if __name__ =='__main__':
    tree=Tree()
    tree.add(1)
    tree.add(2)
    tree.add(3)
    tree.breadth_travel()

运行结果:
1
2
3

二、深度遍历树的节点
深度优先遍历
对于一颗二叉树,深度优先搜索(Depth First Search)是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。
那么深度遍历有重要的三种方法。这三种方式常被用于访问树的节点,它们之间的不同在于访问每个节点的次序不同。这三种遍历分别叫做先序遍历(preorder),中序遍历(inorder)和后序遍历(postorder)。我们来给出它们的详细定义,然后举例看看它们的应用。

先序遍历 在先序遍历中,我们先访问根节点,然后递归使用先序遍历访问左子树,再递归使用先序遍历访问右子树
根节点->左子树->右子树

def preorder(self,node):#先序遍历要进行递归,每次都要传入新的根节点
    if node is None:
        return
    print(node.elem, end = ' ')
    self.preorder(node.lchild)
    self.preorder(node.rchild)

中序遍历 在中序遍历中,我们递归使用中序遍历访问左子树,然后访问根节点,最后再递归使用中序遍历访问右子树
左子树->根节点->右子树

def inorder(self,node):#中序遍历要进行递归,每次都要传入新的根节点
if node is None:
return
self.inorder(node.lchild)
print(node.elem, end = ’ ')
self.inorder(node.rchild)

后序遍历 在后序遍历中,我们先递归使用后序遍历访问左子树和右子树,最后访问根节点
左子树->右子树->根节点

def postorder(self, node): # 后序遍历要进行递归,每次都要传入新的根节点
if node is None:
return
self.postorder(node.lchild)
self.postorder(node.rchild)
print(node.elem, end=’ ')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值