一、二叉树的基本概念
二叉树是每个节点最多有两个子树的树结构。通常子树被称作“左子树”(left subtree)和“右子树”(right subtree)
二、二叉树的性质(特性)
性质1: 在二叉树的第i层上至多有2^(i-1)个结点(i>0)
性质2: 深度为k的二叉树至多有2^k - 1个结点(k>0)
性质3: 对于任意一棵二叉树,如果其叶结点数为N0,而度数为2的结点总数为N2,则N0=N2+1;
性质4:具有n个结点的完全二叉树的深度必为 log2(n+1)
性质5:对完全二叉树,若从上至下、从左至右编号,则编号为i 的结点,其左孩子编号必为2i,其右孩子编号必为2i+1;其双亲的编号必为i/2(i=1 时为根,除外)
三、代码实现建立二叉树(层次)
#coding:utf-8
class Node(object):
"""节点"""
def __init__(self, item):
self.elem = item
self.lchild=None
self.rchild=None
class Tree(object):
"""二叉树"""
def __init__(self):
self.root = None
def add(self, item):
node = Node(item)
if self.root is None :
self.root = node
return
queue = [self.root] #用队列来存储节点
while queue : #队列不为空,就始终能取出结点
cur_node = queue.pop(0)
if cur_node.lchild is None:
cur_node.lchild = node
return
else:
queue.append(cur_node.lchild)
if cur_node.rchild is None:
cur_node.rchild = node
return
else:
queue.append(cur_node.rchild)
def breadth_travel(self):
queue = [self.root]
if self.root is None:
return
while queue:
cur_node = queue.pop(0)
print(cur_node.elem)
if cur_node.lchild is not None:
queue.append(cur_node.lchild)
if cur_node.rchild is not None:
queue.append(cur_node.rchild)
if __name__ =='__main__':
tree=Tree()
tree.add(1)
tree.add(2)
tree.add(3)
tree.breadth_travel()
运行结果:
1
2
3
二、深度遍历树的节点
深度优先遍历
对于一颗二叉树,深度优先搜索(Depth First Search)是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。
那么深度遍历有重要的三种方法。这三种方式常被用于访问树的节点,它们之间的不同在于访问每个节点的次序不同。这三种遍历分别叫做先序遍历(preorder),中序遍历(inorder)和后序遍历(postorder)。我们来给出它们的详细定义,然后举例看看它们的应用。
先序遍历 在先序遍历中,我们先访问根节点,然后递归使用先序遍历访问左子树,再递归使用先序遍历访问右子树
根节点->左子树->右子树
def preorder(self,node):#先序遍历要进行递归,每次都要传入新的根节点
if node is None:
return
print(node.elem, end = ' ')
self.preorder(node.lchild)
self.preorder(node.rchild)
中序遍历 在中序遍历中,我们递归使用中序遍历访问左子树,然后访问根节点,最后再递归使用中序遍历访问右子树
左子树->根节点->右子树
def inorder(self,node):#中序遍历要进行递归,每次都要传入新的根节点
if node is None:
return
self.inorder(node.lchild)
print(node.elem, end = ’ ')
self.inorder(node.rchild)
后序遍历 在后序遍历中,我们先递归使用后序遍历访问左子树和右子树,最后访问根节点
左子树->右子树->根节点
def postorder(self, node): # 后序遍历要进行递归,每次都要传入新的根节点
if node is None:
return
self.postorder(node.lchild)
self.postorder(node.rchild)
print(node.elem, end=’ ')