逆序对

(原题见算法导论思考题2-4)
题目:
假设A[1…n]是一个有n个不同数的数组。若i>j且A[i]<A[j],则对偶(i,j)称为A的一个逆序对(inversion)。
a.插入排序的运行时间与输入数组中逆序对的数量有什么关系。
b.给出一个确定在n个元素任意排列中逆序对数量的算法,最坏情况需要 Θ(nlgn) 时间。
解答:
a.插入排序的每次交换位置涉及一对逆序对,总共交换的次数就是逆序对的数量。即运行时间为: O(n+d) ,n为数组大小,d为逆序对数目,一个n个元素的数组中逆序对数目最多为 n(n1)2 个。
b.通过修改归并排序,可以得到其中逆序对的数量。归并排序仅在merge过程中更改了元素的顺序,merge过程对L和R两个数组进行归并操作,设x为当前L中的首元素,y为当前R中的首元素,若x>y,则说明y和L中剩余的每个元素都构成了一对逆序对,记录下每次归并过程中所有的逆序对数目即可得到总的逆序对数目。代码如下:

#include <stdio.h>
#include <stdlib.h>
void printArray(int *array, int head, int tail) {
    static int count = 0;
    printf("%d::", count);
    count++;
    for (int i = head; i <= tail; i++)
        printf("%d ", array[i]);
    printf("\n");
}
int merge_count(int *array, int head, int mid, int tail) {
    int count = 0;
    int *temp = (int*)calloc(tail - head + 1, sizeof(int));
    if (temp == NULL) {
        printf("error!\n");
        return -1;
    }
    int i = head, k = mid + 1;
    int j = 0;
    while (i <= mid && k <= tail) {
        if (array[i] <= array[k]) {
            temp[j] = array[i];
            ++j;
            ++i;
        } else if (array[i] > array[k]) {
            count += mid - i + 1;
            temp[j] = array[k];
            ++j;
            ++k;
        }
    }
    //注意该次调用剩余部分不会再统计逆序对个数,不然会重复统计
    while (i <= mid) {
        temp[j] = array[i];
        ++j;
        ++i;
    }
    while (k <= tail) {
        temp[j] = array[k];
        ++j;
        ++k;
    }
    for (int i = 0; i < j; ++i)
    {
        array[i + head] = temp[i];
    }
    printArray(array, head, tail);
    return count;
}

int merge_sort_count(int *array, int head, int tail) {
    if (head >= tail) return 0;
    int mid = (head + tail) / 2;
    int inversions = 0;
    inversions += merge_sort_count(array, head, mid);
    inversions += merge_sort_count(array, mid + 1, tail);
    inversions += merge_count(array, head, mid, tail);
    return inversions;
}

int main(int argc, char const *argv[])
{
    int array[5] = {1, 7, 4, 5, 2};
    printf("%d\n", merge_sort_count(array, 0, 4));
    return 0;
}

(原题见算法导论第三版5.2-5)
题目:
设A[1..n]是由n个不同数构成的数列,假设A的元素构成<1, 2, 3, .., n>上的一个均匀随机排列,请计算其中逆序对的数目期望。
解答:
Xij 为位置i和位置j上存在一个逆序对的随机变量,当位置i和位置j上存在逆序对时 Xij 值为1。位置i和位置j上存在逆序对的概率为1/2。因此,有:
E( Xij )=1/2
记X为存在的逆序对的总个数,则有:
E(X)=n1i=1nj=i+1E(Xij)=n(n1)4

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值