Leetcode#215. Kth Largest Element in an Array

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_20177327/article/details/79972970

题目描述:找出数组中第 k 大的数

解题思路:(20180825更新)

  • 思路一:k次冒泡排序,就找到了,复杂度O(k * n)
  • 思路二:使用数组内容构建一个最大堆/最小堆,通过每次pop出堆顶后继续维护堆的结构,直到满足一定的次数(最大堆k-1次,最小堆size-k次),堆顶的元素就是第k大的数字,复杂度O(n + k * log(n));
  • 思路三:维护一个k大小的小顶堆,遍历数组,调整堆,最后堆顶元素就是第k大,复杂度O(k + (n-k) * log(k));
  • 思路四:利用快排的partition函数思想,选定一个数组内的值作为pivot,将小于pivot的数字放到pivot右边,大于等于pivot的数字放到pivot左边。接着判断两边数字的数量,如果左边的数量小于k个,说明第k大的数字存在于pivot及pivot右边的区域之内,对右半区执行partition函数;如果右边的数量小于k个,说明第k大的数字在pivot和pivot左边的区域之内,对左半区执行partition函数。直到左半区刚好有k-1个数,那么第k大的数就已经找到了。
//思路一
class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) 
    {
        //k次冒泡
        for(int i = 0; i < k; ++i)
        {
            for(int j = 1; j < nums.size() - i; ++j)
            {
                if(nums[j] < nums[j - 1])
                    swap(nums[j], nums[j - 1]); 
            }
        }
        return nums[nums.size() - k];
    }
};
//思路二
class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) 
    {
        //建一个最大堆
        make_heap(nums.begin(), nums.end());
        int ret;
        for(int i = 0; i < k; ++i)
        {
            ret = nums.front();
            //第一个元素被移到最后面,剩下的元素继续维持最大堆
            pop_heap(nums.begin(), nums.end());
            //将最后一个元素出堆
            nums.pop_back();
        }
        //以上执行了k步,被取出来的数就是第 k 大的数
        return ret;
    }
};


//思路二,不使用STL的函数建堆,自己建堆
class Solution {
public:
    void Adjust(vector<int> &nums, int i, int k)
    {
        //调整为最大堆
        int j = 2 * i + 1;
        while(j < k)
        {
            if(j + 1 < k && nums[j] < nums[j + 1])
                ++j;
            if(nums[i] < nums[j])
                swap(nums[i], nums[j]);
            i = j;
            j = 2 * i + 1;
        }
    }

    void make_heap(vector<int> &nums, int k)
    {
        for(int i = k/2 - 1; i >= 0; --i)
            Adjust(nums, i, k);
    }

    int findKthLargest(vector<int>& nums, int k) 
    {
        //建一个最大堆
        make_heap(nums, nums.size());
        //int ret;
        for(int i = nums.size() - 1; i >= 0; --i)
        {
            swap(nums[0], nums[i]);
            Adjust(nums, 0, i);
        }
        //以上执行了k步,被取出来的数就是第 k 大的数
        return nums[nums.size() - k];
    }
};
//思路三
class Solution {
public:
    void Adjust(vector<int> &nums, int i, int k)
    {
        //调整为最小堆
        int j = 2 * i + 1;
        while(j < k)
        {
            if(j + 1 < k && nums[j] > nums[j + 1])
                ++j;
            if(nums[i] > nums[j])
                swap(nums[i], nums[j]);
            i = j;
            j = 2 * i + 1;
        }
    }

    void make_heap(vector<int> &nums, int k)
    {
        for(int i = k/2 - 1; i >= 0; --i)
            Adjust(nums, i, k);
    }

    int findKthLargest(vector<int>& nums, int k) 
    {
        make_heap(nums, k);
        for(int i = k; i < nums.size(); ++i) //从第k个元素起,比较
        {
            if(nums[i] > nums[0])
            {
                swap(nums[i], nums[0]);
                Adjust(nums, 0, k);     //注意这里调整的是前k个元素
            }
        }
        return nums[0];
    }
};
//思路四
class Solution {
public:
    int findKthLargest(vector<int>& nums, int k) 
    {
        int low = 0, high = nums.size() - 1;
        while(low <= high)
        {
            int i = low;
            int j = high;
            int pivot = nums[low];
            while(i <= j)
            {
                while(i <= j && nums[i] >= pivot)
                    i++;
                while(i <= j && nums[j] <= pivot)
                    j--;
                if(i < j)
                    swap(nums[i], nums[j]);
            }
            swap(nums[low], nums[j]);
            if(j == k - 1)
                return nums[j];
            else if(j < k - 1)
                low = j + 1;
            else
                high = j - 1;
        }
    }
};
阅读更多

没有更多推荐了,返回首页