uva 10106 Product(高精度大数乘法)

本文探讨了大数乘法的实现方法及如何处理边界数据问题,包括0的特殊情况、避免变量重复定义等关键点。通过实例分析,展示了在编程中正确处理边缘情况的重要性,以避免不必要的错误和时间浪费。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

昨天刚写了个大数加法,今天又来了个大数乘法,其实解法差不多,只不过换成了好多个大数的相加而

已,看别人的算法其实跟我的也差不多,都是这个姿势。wa了一次,竟然忘了考虑0的情况,以后交题之前,都要判

断一下边缘数据,大数据和小数据,要不就是白白被扣时间啊,另外还要注意的是变量不要重复定义!!!除非在调用函数里,要不很容易出错的!!!

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<algorithm>
using namespace std;
char a[300];//存放输入的第一组数据 
char b[300];// 存放输入的第二组数据 
int c[600];//存放每一位数与另一组数据相乘后的结果 
int d[600];//用来保存已经计算过的每一位数与b相乘之后的和 
void solve(char c[])//将输入的数据翻转 
{
	char t;
	int len=strlen(c);
	for(int i=0; i<=(len-1)/2; i++)
	{
		t=c[i];
		c[i]=c[len-1-i];
		c[len-1-i]=t;
	}
}
int main()
{
	int i,j,x,k,q,up,up1,max1;
	while(scanf("%s%s",a,b)!=EOF)
	{
		if(strcmp(a,"0")==0||strcmp(b,"0")==0)//处理输入是0的情况 
		{
				printf("0\n");
				continue;
		}
		memset(d,0,sizeof(d));
		memset(c,0,sizeof(c));
		solve(a);
		solve(b);
		int lena=strlen(a);
		int lenb=strlen(b);
		max1=k=0;
		for(i=0;i<lena;i++)//遍历a数组的每一位数字,让其与b数组的数相乘 
		{
			up=0;
			for(k=0;k<i;k++)
				c[k]=0;
			for(j=0;j<lenb;j++)
			{
				c[k]=(a[i]-'0')*(b[j]-'0')+up;
				up=c[k]/10;
				c[k]=c[k]%10;
				k++;
			}
			if(up!=0)
				c[k++]=up;//c数组存放第i位数与b相乘后的结果 
			max1=max(max1,k);
			for(q=0,up=0;q<max1;q++)
			{
				if(q>=k)
					c[q]=0;
				d[q]=c[q]+d[q]+up;
				up=d[q]/10;
				d[q]=d[q]%10;
			}
			if(up!=0)
				d[max1++]=up;//d数组存放前i位数分别与b相乘后的和 
		}
		int flag=1;
		for(j=max1-1;j>=0;j--)
		{
			if(flag==1&&d[j]==0)//用来处理前导0问题 
				continue;
			printf("%d",d[j]);
			flag=0;
		}
		printf("\n");
	}
}


内容概要:本文详细介绍了基于结构不变补偿的电液伺服系统低阶线性主动干扰抑制控制(ADRC)方法的实现过程。首先定义了电液伺服系统的基本参数,并实现了结构不变补偿(SIC)函数,通过补偿非线性项和干扰,将原始系统转化为一阶积分链结构。接着,设计了低阶线性ADRC控制器,包含扩展状态观测器(ESO)和控制律,用于估计系统状态和总干扰,并实现简单有效的控制。文章还展示了系统仿真与对比实验,对比了低阶ADRC与传统PID控制器的性能,证明了ADRC在处理系统非线性和外部干扰方面的优越性。此外,文章深入分析了参数调整与稳定性,提出了频域稳定性分析和b0参数调整方法,确保系统在参数不确定性下的鲁棒稳定性。最后,文章通过综合实验验证了该方法的有效性,并提供了参数敏感性分析和工程实用性指导。 适合人群:具备一定自动化控制基础,特别是对电液伺服系统和主动干扰抑制控制感兴趣的科研人员和工程师。 使用场景及目标:①理解电液伺服系统的建模与控制方法;②掌握低阶线性ADRC的设计原理和实现步骤;③学习如何通过结构不变补偿简化复杂系统的控制设计;④进行系统仿真与实验验证,评估不同控制方法的性能;⑤掌握参数调整与稳定性分析技巧,确保控制系统在实际应用中的可靠性和鲁棒性。 阅读建议:本文内容详尽,涉及多个控制理论和技术细节。读者应首先理解电液伺服系统的基本原理和ADRC的核心思想,然后逐步深入学习SIC补偿、ESO设计、控制律实现等内容。同时,结合提供的代码示例进行实践操作,通过调整参数和运行仿真,加深对理论的理解。对于希望进一步探索的读者,可以关注文中提到的高级话题,如频域稳定性分析、参数敏感性分析等,以提升对系统的全面掌控能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值