sparse.csr_matrix矩阵的压缩存储

>>> indptr = np.array([0, 2, 3, 6])
>>> indices = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, indices, indptr), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])

以官方文档为例,此时data代表的是存储的值的数组,indices代表的是每一行中第几列有对应data中的元素,即从indices中可以推断出列的信息,

indptr则用来推断出行的信息,默认元素开始为0,第一个元素为2,则证明第一行中有2-0=2个元素,所以将data数组中前另个元素写入第一行中,而indices前两个元素为0,2,则代表第0列和第2列。前两第二个元素为3,证明第二行中有3-2=1个元素,该元素为data[2]=3,且存储在indices[2] = 2列中。依次类推。



>>> row = np.array([0, 0, 1, 2, 2, 2])
>>> col = np.array([0, 2, 2, 0, 1, 2])
>>> data = np.array([1, 2, 3, 4, 5, 6])
>>> csr_matrix((data, (row, col)), shape=(3, 3)).toarray()
array([[1, 0, 2],
       [0, 0, 3],
       [4, 5, 6]])
这个形式比较简单,将data放入对应的row和col就行了。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值