elastic-job入门实例

10 篇文章 0 订阅
1 篇文章 0 订阅

说明

Elastic-Job是一个分布式调度解决方案,由两个相互独立的子项目Elastic-Job-Lite和Elastic-Job-Cloud组成。

Elastic-Job-Lite定位为轻量级无中心化解决方案,使用jar包的形式提供分布式任务的协调服务;Elastic-Job-Cloud采用自研Mesos Framework的解决方案,额外提供资源治理、应用分发以及进程隔离等功能。

功能列表

1. 任务分片

  • 将整体任务拆解为多个子任务
  • 可通过服务器的增减弹性伸缩任务处理能力
  • 分布式协调,任务服务器上下线的全自动发现与处理

2. 多任务类型

  • 基于时间驱动的任务
  • 基于数据驱动的任务(TBD)
  • 同时支持常驻任务和瞬时任务
  • 多语言任务支持

3. 云原生

  • 完美结合Mesos或Kubernetes等调度平台
  • 任务不依赖于IP、磁盘、数据等有状态组件
  • 合理的资源调度,基于Netflix的Fenzo进行资源分配

4. 容错性

  • 支持定时自我故障检测与自动修复
  • 分布式任务分片唯一性保证
  • 支持失效转移和错过任务重触发

5. 任务聚合

  • 相同任务聚合至相同的执行器统一处理
  • 节省系统资源与初始化开销
  • 动态调配追加资源至新分配的任务

6. 易用性

  • 完善的运维平台
  • 提供任务执行历史数据追踪能力
  • 注册中心数据一键dump用于备份与调试问题

相关概念可以访问官方网站进行了解:http://elasticjob.io/index_zh.html

接下来我们就开始实现一个小例子

构建工具

gradle

项目结构如下

这里写图片描述

引入依赖

在build.gradle文件中

//elastic-job
            [group: 'com.dangdang', name: 'elastic-job-lite-core', version: '2.1.5'],
            [group: 'com.dangdang', name: 'elastic-job-lite-spring', version: '2.1.5']

SimpleJob 简单作业

import com.dangdang.ddframe.job.api.ShardingContext;
import com.dangdang.ddframe.job.api.simple.SimpleJob;

public class MyElasticSimpleJob implements SimpleJob{

    @Override
    public void execute(ShardingContext context) {
        switch (context.getShardingItem()) {
            case 0: 
                System.out.println("do something by sharding item 0"); 
                break;
            case 1: 
                System.out.println("do something by sharding item 1"); 
                break;
            case 2: 
                System.out.println("do something by sharding item 2"); 
                break;
            // case n: ...
        }
    }

}

DataFlowJob 数据流作业

import java.util.ArrayList;
import java.util.List;

import com.dangdang.ddframe.job.api.ShardingContext;
import com.dangdang.ddframe.job.api.dataflow.DataflowJob;

public class MyElasticDataflowJob implements DataflowJob<String>{

    @Override
    public List<String> fetchData(ShardingContext context) {
        switch (context.getShardingItem()) {
            case 0: 
                // get data from database by sharding item 0
                List<String> data1 = new ArrayList<>();
                data1.add("get data from database by sharding item 0");
                return data1;
            case 1: 
                // get data from database by sharding item 1
                List<String> data2 = new ArrayList<>();
                data2.add("get data from database by sharding item 1");
                return data2;
            case 2: 
                // get data from database by sharding item 2
                List<String> data3 = new ArrayList<>();
                data3.add("get data from database by sharding item 2");
                return data3;
            // case n: ...
        }
        return null;
    }

    @Override
    public void processData(ShardingContext shardingContext, List<String> data) {
        int count=0;
        // process data
        // ...
        for (String string : data) {
            count++;
            System.out.println(string);
            if (count>10) {
                return;
            }
        }

    }

}

测试以上两种作业

import java.net.InetAddress;

import java.net.UnknownHostException;

import com.dangdang.ddframe.job.api.dataflow.DataflowJob;
import com.dangdang.ddframe.job.api.simple.SimpleJob;
import com.dangdang.ddframe.job.config.JobCoreConfiguration;
import com.dangdang.ddframe.job.config.JobRootConfiguration;
import com.dangdang.ddframe.job.config.dataflow.DataflowJobConfiguration;
import com.dangdang.ddframe.job.config.script.ScriptJobConfiguration;
import com.dangdang.ddframe.job.config.simple.SimpleJobConfiguration;
import com.dangdang.ddframe.job.lite.api.JobScheduler;
import com.dangdang.ddframe.job.lite.config.LiteJobConfiguration;
import com.dangdang.ddframe.job.reg.base.CoordinatorRegistryCenter;
import com.dangdang.ddframe.job.reg.zookeeper.ZookeeperConfiguration;
import com.dangdang.ddframe.job.reg.zookeeper.ZookeeperRegistryCenter;
import com.job.task.MyElasticDataflowJob;
import com.job.task.MyElasticSimpleJob;

public class JobDemo {

    public static void main(String[] args) throws UnknownHostException {
        System.out.println("Start...");
        System.out.println(InetAddress.getLocalHost());
        new JobScheduler(createRegistryCenter(), createSimpleJobConfiguration()).init();
        new JobScheduler(createRegistryCenter(), createDataflowJobConfiguration()).init();
    }

    private static CoordinatorRegistryCenter createRegistryCenter() {
        CoordinatorRegistryCenter regCenter = new ZookeeperRegistryCenter(
                new ZookeeperConfiguration("127.0.0.1:2181", "new-elastic-job-demo"));
        regCenter.init();
        return regCenter;
    }

    private static LiteJobConfiguration createSimpleJobConfiguration() {
        // 定义作业核心配置
        JobCoreConfiguration simpleCoreConfig = JobCoreConfiguration.newBuilder("SimpleJobDemo", "0/15 * * * * ?", 10).build();
        // 定义SIMPLE类型配置
        SimpleJobConfiguration simpleJobConfig = new SimpleJobConfiguration(simpleCoreConfig, MyElasticSimpleJob.class.getCanonicalName());
        // 定义Lite作业根配置
        JobRootConfiguration simpleJobRootConfig = LiteJobConfiguration.newBuilder(simpleJobConfig).build();

        return (LiteJobConfiguration) simpleJobRootConfig;

    }

    private static LiteJobConfiguration createDataflowJobConfiguration() {
        // 定义作业核心配置
        JobCoreConfiguration dataflowCoreConfig = JobCoreConfiguration.newBuilder("DataflowJob", "0/30 * * * * ?", 10).build();
        // 定义DATAFLOW类型配置
        DataflowJobConfiguration dataflowJobConfig = new DataflowJobConfiguration(dataflowCoreConfig, MyElasticDataflowJob.class.getCanonicalName(), true);
        // 定义Lite作业根配置
        JobRootConfiguration dataflowJobRootConfig = LiteJobConfiguration.newBuilder(dataflowJobConfig).build();

        return (LiteJobConfiguration) dataflowJobRootConfig;
    }
}

运行结果

这里写图片描述


现在我们通过配置文件的方式来实现两种类型的作业

创建elastic.xml配置文件

将elastic-job通过配置文件进行参数设置

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:reg="http://www.dangdang.com/schema/ddframe/reg"
    xmlns:job="http://www.dangdang.com/schema/ddframe/job"
    xsi:schemaLocation="http://www.springframework.org/schema/beans 
                        http://www.springframework.org/schema/beans/spring-beans.xsd 
                        http://www.dangdang.com/schema/ddframe/reg 
                        http://www.dangdang.com/schema/ddframe/reg/reg.xsd 
                        http://www.dangdang.com/schema/ddframe/job 
                        http://www.dangdang.com/schema/ddframe/job/job.xsd 
                        ">

    <!-- 配置作业注册中心; baseSleepTimeMilliseconds:等待重试的间隔时间的初始值单位:毫秒 ; 
    maxSleepTimeMilliseconds:等待重试的间隔时间的最大值单位:毫秒;maxRetries:最大重试次数 -->
    <reg:zookeeper id="regCenter" server-lists="192.168.6.175:12181"
        namespace="elastic-job" base-sleep-time-milliseconds="1000"
        max-sleep-time-milliseconds="3000" max-retries="3" />

    <!-- 配置简单作业 -->
    <job:simple id="JobSimpleJob" class="com.job.task.MyElasticSimpleJob"
        registry-center-ref="regCenter" cron="0/30 * * * * ?"
        sharding-total-count="3" sharding-item-parameters="0=A,1=B,2=C" />

    <!-- 配置数据流作业, job-parameter定义的为分页参数 
    sharding-total-count 作业分片总数
    sharding-item-parameters分片序列号和参数用等号分隔,多个键值对用逗号分隔 ,分片序列号从0开始,不可大于或等于作业分片总数
    job-parameter 作业自定义参数,可通过传递该参数为作业调度的业务方法传参,用于实现带参数的作业
    例:每次获取的数据量、作业实例从数据库读取的主键等
    job-sharding-strategy-class 作业分片策略实现类全路径 默认使用平均分配策略
    streaming-process 是否流式处理数据
    reconcile-interval-minutes 修复作业服务器不一致状态服务调度间隔时间,配置为小于1的任意值表示不执行修复
    event-trace-rdb-data-source 作业事件追踪的数据源Bean引用
    -->

        <job:dataflow id="JobDataflow" class="com.job.task.MqElasticDataflowJob" 
        registry-center-ref="regCenter" cron="0/10 * * * * ?" sharding-total-count="3" 
        sharding-item-parameters="0=a,1=b,2=c" job-sharding-strategy-class="com.dangdang.ddframe.job.lite.api.strategy.impl.AverageAllocationJobShardingStrategy" 
        job-parameter="100" streaming-process="true" reconcile-interval-minutes="10" 
        overwrite="true" event-trace-rdb-data-source="dataSource"/> 

</beans>

配置datasource

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:util="http://www.springframework.org/schema/util"
    xmlns:tx="http://www.springframework.org/schema/tx"
    xsi:schemaLocation="http://www.springframework.org/schema/beans http://www.springframework.org/schema/beans/spring-beans.xsd http://www.springframework.org/schema/util http://www.springframework.org/schema/util/spring-util.xsd http://www.springframework.org/schema/tx http://www.springframework.org/schema/tx/spring-tx.xsd">

    <bean id="dataSource" class="com.mchange.v2.c3p0.ComboPooledDataSource"
        destroy-method="close">
        <property name="driverClass" value="com.mysql.jdbc.Driver" />
        <property name="jdbcUrl" value="jdbc:mysql://127.0.0.1:3306/for_test?useUnicode=yes&amp;characterEncoding=UTF-8" />
        <property name="user" value="admin" />
        <property name="password" value="super" />
        <property name="minPoolSize" value="3" />
        <property name="maxPoolSize" value="20" />
        <property name="acquireIncrement" value="1" />
        <property name="testConnectionOnCheckin" value="true" />
        <property name="maxIdleTimeExcessConnections" value="240" />
        <property name="idleConnectionTestPeriod" value="300" />
    </bean>


</beans>

创建applicationContext.xml文件

将elastic-job与Spring整合

<beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xmlns:context="http://www.springframework.org/schema/context" xmlns:task="http://www.springframework.org/schema/task"
    xsi:schemaLocation="http://www.springframework.org/schema/beans
        http://www.springframework.org/schema/beans/spring-beans-3.2.xsd
        http://www.springframework.org/schema/context
        http://www.springframework.org/schema/context/spring-context.xsd
        http://www.springframework.org/schema/task http://www.springframework.org/schema/task/spring-task.xsd ">

    <task:scheduler id="taskScheduler" pool-size="10" />
    <task:executor id="taskExecutor" />
    <task:annotation-driven executor="taskExecutor" scheduler="taskScheduler" />

    <import resource="elastic.xml" />
    <import resource="mysql.xml"/>
</beans>

配置web.xml

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">

    <display-name>elastic-job</display-name>

    <!-- 用来设定web应用的环境参数(context) -->
    <context-param>
        <param-name>contextConfigLocation</param-name>
        <param-value>classpath:applicationContext.xml</param-value>
    </context-param>

    <!-- listener元素用来定义Listener接口,对事件监听程序 -->
    <listener>
        <listener-class>
            org.springframework.web.context.ContextLoaderListener
        </listener-class>
    </listener>

</web-app>

运作结果

这里写图片描述

代码下载:https://coding.net/u/liaiyomia/p/elasticJobDemo/git

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值