大数据
a useful man
希望做一个有用的人。
展开
-
MS/OR国际期刊排名
首先声明:这份MS/OR国际期刊排名是完全根据2011年JCR(Journal Citation Reports)的Article Influence Score(AIS)而给出的。所以,这份榜单仅仅是转载JCR的MS/OR ranking而已。目前为止,最有说服力的期刊排名标准是AIS。根据JCR的官方说明,Article Influence Score作如下解释:The Article Influence determines the average influence of a journal’s原创 2020-05-22 15:38:54 · 1517 阅读 · 0 评论 -
py2数据分析_利用数据
with open("Colors.txt", 'rb') as open_file: print 'Colors.txt content:\n' + open_file.read()with open("Colors.txt", 'rb') as open_file: for observation in open_file: print 'Reading D...原创 2019-10-13 19:23:27 · 118 阅读 · 0 评论 -
数据可视化与数据预处理
# -*- coding: utf-8 -*-"""Created on Fri Oct 4 20:41:20 2019@author: shenlong"""import osimport numpy as npimport matplotlib.pyplot as pltimport pandas as pd"""代码说明:programmer_1:...原创 2019-10-04 21:44:49 · 1471 阅读 · 0 评论 -
信用风险评价模型
信用风险评价模型:指标数据标准化处理正向指标标准化 Xij第i个指标第j个企业的标准化值vij第i个指标第j个企业的实际值m企业数负向指标标准化 (3)区间指标标准化处理(4)定性指标标准化2.指标筛选的方法:(1)第一次筛选:似然比检验——保留能够显著区分违约与非违约两种状态的指标,删除对违约状态影响不显著的指标...原创 2019-10-07 10:45:34 · 6259 阅读 · 0 评论 -
pandas中DataFrame的apply()方法和applymap()方法,以及python内置函数map()
我们经常会对DataFrame对象中的某些行或列,或者对DataFrame对象中的所有元素进行某种运算或操作,我们无需利用低效笨拙的循环:import pandas as pdimport numpy as npfrom pandas import DataFramefrom pandas import Seriesdf1= DataFrame({"sales1":[-1,2,3],...原创 2019-10-07 13:29:50 · 532 阅读 · 0 评论 -
用Scikit-learn和TensorFlow进行机器学习_1
参考文献机器学习概览一、什么是机器学习?1、定义2、适用二、分类1、监督, 非监督, 半监督和强化学习(1)监督学习(2)非监督学习(3)半监督学习(4)强化学习2、在线学习 vs 批量学习(1)在线学习(2)批量学习3、基于实例学习 vs 基于模型学习(1)基于实例学习(2)基于模型学习三、主要挑战四、测试和确认机器学习概览一、什么是机器学习?1、定义...原创 2019-10-07 13:41:02 · 117 阅读 · 0 评论 -
markdown编辑器语法——背景色
背景色使用示例:<table><tr><td bgcolor=#7FFFD4>这里的背景色是:Aquamarine, 十六进制颜色值:#7FFFD4, rgb(127, 255, 212)</td></tr></table>效果:这里的背景色是:Aquamarine, 十六进制颜色值:#7FFFD4, rgb(12...原创 2019-10-07 15:12:21 · 1016 阅读 · 0 评论 -
ML_preprocessing
1、下载数据'''数据集为房屋信息housing,代码运行后,会下载一个tgz文件,然后用tarfile解压,解压后目录中会有一个housing.scv文件(可以自行用excel打开看看),下载代码为:'''#跑一次就可以了import osimport tarfilefrom six.moves import urllibDOWNLOAD_ROOT = "https://r...原创 2019-10-07 17:37:41 · 235 阅读 · 0 评论 -
csv文件的读写
1. 读取csv文件import pandas as pdimport numpy as np# 读取整个csv文件csv_data = pd.read_csv("datasets\housing\housing.csv")# 读取指定列索引字段的数据csv_data = pd.read_csv("datasets\housing\housing.csv", usecols=['m...原创 2019-10-07 19:32:58 · 828 阅读 · 1 评论 -
pandas绘图
原创 2019-10-07 19:36:09 · 101 阅读 · 0 评论 -
爬虫——基本库的使用
urllib.request.urlopen(url, data=None, [timeout, ]*, cafile=None, capath=None, cadefault=False, context=None)import urllib.requestresponse=urllib.request.urlopen('https://www.python.org')#输出网页源代码...原创 2019-10-07 21:22:12 · 114 阅读 · 0 评论 -
神经网络
新的方法就多了:新的激活函数:ReLU,新的权重初始化方法(逐层初始化,XAVIER等),新的损失函数,新的防止过拟合方法(Dropout, BN等)。这些方面主要都是为了解决传统的多层神经网络的一些不足:梯度消失,过拟合等。广义上来说,NN(或是DNN)确实可以认为包含了CNN、RNN这些具体的变种形式。在实际应用中,所谓的深度神经网络DNN,往往融合了多种已知的结构,包括卷积层或是LSTM单...原创 2019-10-09 19:42:05 · 273 阅读 · 0 评论 -
《python数据分析实战》第七章手写
以后建模希望可以直接用到,做个备忘#%%import numpy as npfrom sklearn import datasets,linear_model,svm,neighbors,tree,gaussian_process,neural_network,naive_bayes#%% md# 分类方法使用数据集为:iris#%%iris=datasets.load_iris(...原创 2019-10-04 20:19:43 · 487 阅读 · 0 评论 -
groupby技术
前言Python的pandas包提供的数据聚合与分组运算功能很强大,也很灵活。《Python for Data Analysis》这本书第9章详细的介绍了这方面的用法,但是有些细节不常用就容易忘记,遂打算把书中这部分内容总结在博客里,以便复习查看。根据书中的章节,这部分知识包括以下四部分:1.GroupBy Mechanics(groupby技术)2.Data Aggregation(...转载 2019-10-04 17:34:29 · 2028 阅读 · 0 评论 -
pandas_1
# -*- coding: utf-8 -*-"""Created on Tue Sep 24 23:39:27 2019@author: Administrator"""#pandas处理文本字符串import pandas as pdimport numpy as nps = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan...原创 2019-09-27 00:29:39 · 550 阅读 · 0 评论 -
python学习笔记《利用python进行数据分析》
C:\Users\Administrator.USER-20190710UX>ipythonPython 3.7.3 (default, Mar 27 2019, 17:13:21) [MSC v.1915 64 bit (AMD64)]Type 'copyright', 'credits' or 'license' for more informationIPython 7.4.0 ...原创 2019-09-27 00:32:52 · 151 阅读 · 0 评论 -
同样的代码,conda无法运行,命令行却可以运行
>>> from turtle import *>>> setup(680,280,200,200)>>> #设置画布...>>> pensize(5)>>> speed(3)>>> color('red')>>> #画笔颜色...>>>...原创 2019-09-27 16:40:10 · 352 阅读 · 0 评论 -
4.1处理缺失数据
#第四章 数据预处理#处理缺失数据#1.识别数据中的缺失数值import pandas as pdfrom io import StringIOcsv_data=\ ''' A,B,C,D 1.0,2.0,3.0,4.0 5.0,6.0,,8.0 10.0,11.0,12.0,''' #如果正在使用python2,需要把字符串解码#csv_...原创 2019-09-28 00:09:54 · 164 阅读 · 0 评论 -
机器学习XGBoost——后面的明天更
#https://blog.csdn.net/cg129054036/article/details/82454117#这个教程挺详细的#XGBoost:处理标准表格数据的领先模型(您在Pandas DataFrames中存储的数据类型,而不是像图像和视频这样的更奇特的数据类型)#非常适合我现在所研究的领域#我的学习目标:#1.使用XGBoost完整建模#2.微调XGBoost#ht...原创 2019-09-28 00:25:20 · 120 阅读 · 0 评论 -
画图
import matplotlib.pyplot as pltimport numpy as npimport pandas as pd'''x=np.linspace(0,20)plt.plot(x,.5+x)plt.plot(x,1+2*x,'--')#x,y,规定线条格式plt.show()#plt.savefig('first_fig')#savefig()函数可以将图像...原创 2019-09-29 10:47:36 · 141 阅读 · 0 评论 -
导入python自带的一系列数据集等操作
#通过matplotlib实现数据的可视化#sklearn库自带数据集,加载的方式是固定的,站在巨人的肩膀上'''#导入数据集from sklearn.datasets import load_irisfrom sklearn.datasets import load_boston#导入matplotlib绘图模块from matplotlib import pyplot as p...原创 2019-09-29 10:48:39 · 2594 阅读 · 0 评论 -
python三维图
#三维图#Axes3D是由matplotAPI提供的一个类,可以用来绘制三维图,matplotlib的Figure类是存放各种图像元素的顶级容器。'''#1.创建一个Figure对象import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfig=plt.figure()#2.利用Figure对象创...原创 2019-09-29 14:38:24 · 849 阅读 · 0 评论 -
numpy基础详解
#关键的一点不是你看了多少书,时时回头看,整理,更加充实,更加精炼import numpy as np#ndarray_n维数组对象,属性#shape:返回一个元组,用于说明ndarray各个维度的长度#ndim:ndarray对象的维度#size:ndarray元素的个数,相当于各个维度长度的乘积#dtype:ndarray中存储的元素的数据类型#itemsize:ndarray...原创 2019-09-29 17:45:25 · 234 阅读 · 0 评论 -
机器学习:范数及代码实现
#np.linalg.norm(求范数)#linalg=linear(线性)+algebra(代数),norm则表示范数。'''函数参数x_norm=np.linalg.norm(x, ord=None, axis=None, keepdims=False)x: 表示矩阵(也可以是一维)ord:范数类型https://blog.csdn.net/hqh131360239/articl...原创 2019-09-29 18:37:14 · 560 阅读 · 0 评论 -
where()函数的用法
import numpy as np#np.where()有两种用法:#1.np.where(condition, x, y)#满足条件(condition),输出x,不满足输出y。aa = np.arange(10)np.where(aa,1,-1)np.where(aa > 5,1,-1)np.where([[True,False], [True,True]],[[1,2...原创 2019-09-29 19:20:35 · 5733 阅读 · 0 评论