论文阅读: App2Vec: Vector Modeling of Mobile Apps and Applications

本文探讨了基于大规模用户数据的APP相似度计算方法,包括余弦相似度、Bag-of-Words、矩阵分解等,并提出一种改进的word2vec模型——CBDW,通过排序、合并及权重调整来捕捉APP间的时间上下文关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 论文数据来源:雅虎
  • 数据量:300 million iOS users from one day in February 2015。 三亿用户一天APP的使用情况~~
  • 生成APP vector之间评估相似的方法: 余弦相似度。
  • 准确性评估标准: 人工审查。定义了strong relevant、relevant、not relevant三个级别。

  • 比较方法:
  1. BoW(Bag-of-words):根据APP的描述信息、标签、名字等,TF-IDF提取关键词。计算关键词之间的余弦相似度。
  2. BoWCategory:APP应用商店里,在一个类目下的APP更相似。基于此假设,选取APP所属类目下,top n 相似的APP作为相似APP。
  3. MFBinary: 矩阵分解,其中初始矩阵中是由0-1填充,表示用户是都使用该app。低秩矩阵user-app。
  4. MFIntensity: 矩阵由APP的使用频次填充(某app使用次数/所有APP的使用次数)。
  5. word2vecOnApp: APP的使用序列作为sentence,每个APP是一个word,直接训练。
  6. app2vec:用户的APP使用序列预处理(加入时间间隔、去冗余),权重根据时间间隔距离越大而越小。

本文提出的模型:改进word2vec的CBOW模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值