keras模型加载 Unknown Layer

本文详细解析了在使用Keras加载自定义层模型时遇到的UnknownLayer错误,并提供了正确的加载方式,包括如何声明自定义类及实例,以及解决自定义层中参数未设置初始值的问题。

存储模型train.py: model.save('model_weight.h5')

 

在predict.py中,使用model = load_model("model_weight.h5")对模型进行加载的时报错信息:

  1. Unknown Layer: LayerName。此处的LayerName代指自定义的layer。
  2. global name 'tf' is not defined

正确加载方式: 

  1. 声明自定义的类,并创建实例。
  2. model = load_model("model_weight.h5", custom_objects={'tf': tf, 'Self_Attention': Self_Attention_shili, "local_Attention":local_Attention_shili}) ;将自己定义的类的名称和实例传进去。
  3. 如果自定义的类中,存在参数没有设置初始默认值,则会报错TypeError: init() missing 1 required positional argument: 'XXX'。解决方法:给一个初始值,需要和训练时候的参数维度一致。

 

 

参考链接:

https://www.jianshu.com/p/e97112c34e43

 https://blog.csdn.net/sysleo/article/details/94551884

### 如何解决 TensorFlow 中 `Unknown layer: BatchNormalization` 错误 当遇到 `Unknown layer: BatchNormalization` 的错误时,通常是因为加载模型的过程中未能正确识别自定义层或特定版本差异引起的。为了有效解决问题,可以采取以下措施: 对于基于 Keras 或 tf.keras 构建并保存的模型,在尝试加载这些模型之前,确保所有必要的组件已经被正确定义和引入。特别是像批量标准化这样的特殊图层。 如果是在迁移学习或其他场景下遇到了这个问题,则可能需要确认所使用的框架版本一致性以及是否存在不同库之间的冲突情况。例如,混用独立安装版 kerastensorflow 内置的 tf.keras 可能引发此类问题[^2]。 针对此具体案例,建议采用如下策略来修正该问题: - **统一使用同一套 API**:避免同时调用来自两个不同源(即纯 Keras 和 tf.keras)的对象;推荐全部切换到 tf.keras 上面。 - **注册缺失类**:有时即使完全依赖于 tf.keras,仍可能出现未知层的情况。此时可以在加载前先手动注册那些未被自动识别出来的类。比如对于批处理规范化层而言,可以通过下面的方式实现这一点: ```python from tensorflow.keras.layers import deserialize as deserialize_layer deserialize_layer({'class_name': 'BatchNormalization', 'config': {...}}) ``` 不过更简便的方法是直接指定 custom_objects 参数给 load_model 方法,从而让其知晓如何解析特定类型的节点: ```python import tensorflow as tf model = tf.keras.models.load_model( "path/to/model", custom_objects={"BatchNormalization": tf.keras.layers.BatchNormalization} ) ``` 上述操作能够帮助系统理解并正确重建包含有 BatchNormalization 层在内的整个网络结构。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值