- 博客(28)
- 收藏
- 关注
原创 pytorch中expand和repeat的区别
expandimport torcha = torch.Tensor([[1,2,3]])'''tensor( [[1.,2.,3.]])'''aa = a.expand(4, 3) # 也可写为a.expand(4, -1) # 对于某一个维度上的值为1的维度,可以在该维度上进行tensor的复制,若大于1则不行'''tensor( [[1.,2.,3.], [1.,2.,3.], [1.,2.,3.], [1.,2.,3.]])'''a = torch.Tensor
2021-09-11 16:25:05
813
原创 C++实用经验(五)
C++实用经验(五)禁止函数返回局部变量的引用函数传值、传指针和传引用的效率分析效率分析内联函数会像宏一样替换吗函数重载需要考虑什么不要让main返回void如何降低函数的圈复杂度声明:以下内容总结自《C++程序员不可不知的101条实用经验》禁止函数返回局部变量的引用函数被调用时的操作:编译器首先把函数的输入/输出参数放到堆栈,指令寄存器IP放到堆栈(作为函数返回出口地址),然后是基址寄存器,接着是函数的局部变量。当函数返回时执行弹出操作,顺序正好和放到堆栈的顺序相反(首先释放堆栈中的局部存储变量,然
2020-06-28 16:30:51
558
原创 C++实用经验(四)
C++实用经验(四)运算符引发的混乱尽量使用C++转换操作符计算机如何存储变量五个存储区确保每个对象在使用前被初始化全局变量变量定义的位置和时机引用难道只是别人的替身枚举和一组预处理的#define有何不同为何struct x1{struct x1 stX};无法通过编译typedef的使用陷阱优化结构体中元素布局数据对齐内存对齐既有结构体,为何要联合体提防隐式转换带来的麻烦内置类型间的隐式转换n...
2019-09-29 15:35:22
446
原创 论文Action Tubelet Detector for Spatio-Temporal Action Localization解读
论文链接https://arxiv.org/abs/1705.01861动机当前的行为定位算法都是在每一帧上进行目标检测得到空间定位,再连接每一帧上的检测结果得到时间上的定位。这种方式将每一帧作为独立的输入,没有将视频帧的时间连续性特征信息考虑进去,容易造成检测结果的模糊贡献提出一个Action Tubelet detector (ACT-detector),输入多帧连续视频帧,输出预测...
2019-08-19 21:00:40
2666
原创 目标检测FCOS: Fully Convolutional One-Stage Object Detection论文详解
论文链接https://arxiv.org/abs/1904.01355动机1.目标检测中的anchor机制有以下缺点:(1)检测性能容易受先验的anchor box的大小、长宽比和数量的影响 (2)在训练和检测过程中anchor box都是固定的,当出现目标形状剧烈变化时,会难以适应这种变化从而影响检测效果 (3)为了实现高召回率,需要在图片上提取大量anchor box进行筛选,其中大部...
2019-08-06 22:42:27
520
原创 目标检测CornerNet: Detecting Objects as Paired Keypoints论文详解
论文链接https://arxiv.org/abs/1808.01244动机在目标检测中使用anchor box的两个缺点:(1)在检测过程中会生成大量anchor box并计算每个anchor box和ground truth box的IoU。其中大部分的anchor box都是负样本而被丢弃。这个机制减慢了训练速度,增加了计算开销。 (2)anchor机制引入了更多的超参数,比如anch...
2019-08-01 10:30:59
599
原创 Faster-RCNN论文解读
动机选取region proposal的算法在CPU上比较消耗时间。Selective search算法速度大约是一张图片两秒,Edgeboxes算法大约是一张图片0.2秒贡献提出region proposal network,能够替代selective search算法和edgeboxes算法,直接在GPU上进行region proposal的选取和过滤,并且几乎不需要太多计算开销算法...
2019-07-28 00:52:11
274
转载 TensorRT-FP32转INT8的校准原理
Nvidia官网对TensorRT的介绍:https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.htmlTensorRT-FP32转INT8的校准原理:https://arleyzhang.github.io/articles/923e2c40/
2019-07-27 19:06:33
908
原创 语义分割Searching for Efficient Multi-Scale Architectures for Dense Image Prediction论文详解
论文链接https://arxiv.org/abs/1809.04184动机目前的工作显示了在图像分类任务上,通过meta learning自动设计的网络的表现已经超过了一些人工设计的网络。但是我们希望把meta learning技巧运用到其他视觉任务上,比如语义分割、目标检测。这类任务依赖高分辨率的图片输入以及多尺度的图片特征表达。但是把分类任务的想法运用到这类更复杂的任务上无法满足任务要...
2019-07-24 19:29:56
452
原创 实时语义分割BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation论文解读
论文链接http://openaccess.thecvf.com/content_ECCV_2018/papers/Changqian_Yu_BiSeNet_Bilateral_Segmentation_ECCV_2018_paper.pdf动机目前加速实时语义分割的方法:(1)限制输入图片的分辨率以减少计算复杂度,但导致了空间细节信息丢失 (2)减少网络通道数,但减弱了空间特征信息容纳能力...
2019-07-24 19:27:33
759
原创 实时语义分割网络结构汇总
为激发语义分割研究的新想法,特将最近的实时语义分割网络结构进行了汇总,方便大家对实时语义分割网络结构有一个直观快速的了解。Design of Real-time Semantic Segmentation Decoder for Automated DrivingAn efficient solution for semantic segmentation: ShuffleNet V2 wi...
2019-07-23 23:16:26
3437
原创 语义分割Analysis of efficient CNN design techniques for semantic segmentation论文解读
论文链接http://openaccess.thecvf.com/content_cvpr_2018_workshops/papers/w12/Briot_Analysis_of_Efficient_CVPR_2018_paper.pdf动机目前有许多关于如何设计高效网络结构的研究,涉及到各种不同的技巧,但是对高效的网络结构设计技巧没有系统性的总结贡献对语义分割领域的网络设计方法技巧进行...
2019-07-20 16:01:42
1114
1
原创 C++实用经验(三)
C++实用经验(二)理解指针的本质论数组和指针的等价性再论数组和指针的差异性充满疑惑的数组指针和指针数组数组指针指针数组禁止声明:以下内容总结自《C++程序员不可不知的101条实用经验》理解指针的本质C++标准规定:存放地址的变量称为指针变量,变量的地址称为变量的指针指针的两个属性:(1)指针变量值的范围在[0, 2^n-1],n是机器地址线的数量,即指针变量占用n个bit; (2)指针...
2019-07-20 13:26:03
452
原创 车道线检测Towards End-to-End Lane Detection: an Instance Segmentation Approach论文解读
论文链接https://arxiv.org/pdf/1802.05591.pdf动机传统车道线检测算法不够灵活,对于不同的检测场景缺少适应性。而基于深度学习的算法在做语义分割后需要进行后处理区分,但是后处理往往计算量大,缺乏灵活性。有些算法对车道线进行分类,直接通过类别对各个车道线进行区分,但这个方法使得可预测的车道线数量固定,只能检测ego lane,当车道线数量变化时,无法适应贡献...
2019-07-19 23:57:31
1314
原创 语义分割Deeplabv3+论文解读
论文链接https://arxiv.org/abs/1802.02611动机在Deeplabv3和PSPNet中,虽然丰富的语义信息被编码,但是在backbone网络中多次下采样使得被分割物体的边缘信息丢失,导致边缘模糊使用空洞卷积可以减少下采样,缓解由于下采样过多而使得被分割物体的边缘信息丢失的问题,但是空洞卷积往往导致占用过多显存,计算过于复杂,特别使当输出的分辨率是输入分辨率的1/...
2019-07-18 23:52:17
3991
原创 车道图片与分割图片进行半透明叠加
实现车道分割算法时需要将车道分割结果叠加到原图上,方便观察分割效果。以下图例来自bdd100k数据集import numpy as npimport cv2import matplotlib.pyplot as pltcolor_label_path = "color_label.png"img_path = "img.jpg"img = cv2.imread(img_path)...
2019-07-16 17:11:53
688
转载 opencv Rect用法
转载:https://blog.csdn.net/kh1445291129/article/details/51149849//如果创建一个Rect对象rect(100, 50, 50, 100),那么rect会有以下几个功能:rect.area(); //返回rect的面积 5000rect.size(); //返回rect的尺寸 [50 × 100]rect.tl();...
2019-07-15 22:42:46
564
原创 在本地浏览器显示服务器端运行的tensorboard
使用tensorboard必须安装tensorflow,但发现官网没有提供旧版本tensorflow-1.12.0。可以从
2019-07-15 19:31:01
938
1
原创 github上传修改删除命令总结
上传代码登录github账号,在Repositories页面上点击New,出来界面如下:输入仓库名字、描述,选择权限、是否初始化一个README.md文件,添加.gitignore和license1)初始化和不初始化README.md文件会导致后续代码上传过程有一些区别,会在后面详细介绍2)添加.gitignore。在使用Git的过程中,我们喜欢有的文件比如日志,临时文件,编译的中间文...
2019-07-13 14:31:20
325
原创 车道线检测Enhanced free space detection in multiple lanes based on single CNN with scene identification解读
论文链接https://arxiv.org/abs/1905.00941动机目前的车道检测方法使用CNN预测车道线和车道标志,这种监督训练使得CNN非常依赖数据标签,但是这类车道的数据标签在一些城市很难得到。而且,由于道路环境中的标签类别比例不平衡,传统监督方法更易检测粗车道线。同时,行驶障碍物定位和可行驶区域检测也是非常重要的。但是这类检测在应用时需要降低计算开销。最后,车道定位无法给出行...
2019-07-12 00:04:15
1251
转载 C++实用经验(二)
C++实用经验(二)尽可能多地使用const函数声明使用const函数返回值声明为constconst类成员函数尽量用const常量代替#define定义常量尽量用new/delete替代malloc/freesizeof和对象大小用法谨慎使用static静态局部变量静态全局变量声明:以下内容总结自《C++程序员不可不知的101条实用经验》尽可能多地使用const函数声明使用constvo...
2019-07-11 20:28:21
176
原创 车道线检测Spatial As Deep: Spatial CNN for Traffic Scene Understanding(论文解读)
论文链接https://arxiv.org/pdf/1712.06080.pdf动机当前基于CNN的语义分割对于图片中处于同一行或同一列的像素关系仍然有待进一步深入探索。这种像素关系的挖掘对于分割多个具有先验性的固定形状但是各个形状之间没有太大耦合性的目标是非常重要的。而车道线就是这一类目标。而目前的语义分割算法对于长条状区域和遮挡区域的分割效果不佳。在传统的基于马尔可夫随机场或者条件随...
2019-07-07 14:49:40
1744
转载 C++实用经验(一)
C++实用经验(一)掌握在C++中如何使用C封装、继承、多态封装:继承多态计算机如何存储变量五个存储区确保每个对象在使用前被初始化全局变量变量定义的位置和时机引用难道只是别人的替身枚举和一组预处理的#define有何不同为何struct x1{struct x1 stX};无法通过编译typedef的使用陷阱优化结构体中元素布局掌握在C++中如何使用C要在cpp文件中使用c文件中的函数代码,要...
2019-07-06 20:43:15
590
原创 caffe卷积层代码注解
base_conv_layer.cpp#include <algorithm>#include <vector>#include "caffe/filler.hpp"#include "caffe/layer.hpp"#include "caffe/util/im2col.hpp"#include "caffe/util/math_functions.hpp"...
2019-07-06 13:45:02
362
原创 CUDA基础知识点
CUDA知识点CUDA设备属性内存读写修饰符\_\_global\_\_\_\_device\_\_修饰函数修饰变量\_\_constant\_\_\_\_shared\_\_并行编程An example内置变量用事件测量性能插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaT...
2019-07-05 09:03:24
1231
原创 车道线检测End-to-end Lane Detection through Differentiable Least-Squares Fitting(论文解读)
摘要一般的车道线检测算法分为两步,第一步进行图像分割,第二步对分割结果进行后处理。本文提出一个一步到位的端到端训练的车道线检测算法,包含两个部分:(1)预测weight map的卷积神经网络 (2)一个用于拟合车道线的可微的最小二乘法拟合模块...
2019-07-04 20:16:00
2552
2
原创 cuda-gdb fatal: All CUDA devices are used for display and cannot be used while debugging.问题解决
在用cuda-gdb调试cuda程序时,会报错:fatal: All CUDA devices are used for display and cannot be used while debugging. (error code = CUDBG_ERROR_ALL_DEVICES_WATCHDOGGED(0x18)(cuda-gdb) [Thread 0x7fffb1b51700 (LW...
2019-07-02 19:58:59
658
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人