面经——腾讯、华为、cvte、京东、头条

很多问题不记得了 依稀的记忆如下


腾讯——基础研究(机器学习算法岗)

2018.4.11 一面

1、介绍一下梯度下降、梯度消失->怎么解决->(resnet、LSTM)

2、怎么防止过拟合->正则化->介绍L1(稀疏)、L2(平滑)

3、样本不平衡怎么处理

4、介绍一下XGBOOST、GBDT

5、场景题:给定8亿的WiFi数据(特征:接入时间、mac地址、类型(公共、家庭)、型号、名称......)和6千万的实体(特征:属性(酒店、商场、学校......)、userID......),怎么把他们关联起来?

思路:

1)首先应该注意到两个信息的量级差的很大,故第一步应该缩小范围,主要根据WiFi类型&实体接入的userID,划分公共WiFi&私人WiFi;

2)关联时间可以细化;eg:如现在已经判定是学校的WiFi,那么怎么关联到是教学楼的WiFi还是食堂的WiFi还是寝室,可以根据时间流的接入峰值来判断,食堂WiFi的接入时间多在饭点时刻;

3)WiFi名字的统一;如SYSU、中山大学、zhongshandaxue,都表示同一实体,可以用word2vec统一

2018.4.13 二面

面试官看我的简历看了1min,也没让自我介绍,然后说现在学生做的东西都很像啊,什么5层CNN,设置滤波器,用caffe或者TensorFlow啊,然后项目的东西一点没问,机器学习算法也没问,也不手撕代码,介绍场景题就介绍了10min~

场景题:

背景:面试官给了我他手机看,有个传感APP,有加速度,角速度,重力加速度......可以反映手机触碰、移动等情况下的变化;

应用:反作弊;黑厂会利用机器同时操控n台手机,完成注册,可能会刷单或者转发消息......

需要解决的问题:step1.如何区分黑厂和正常用户;step2.如何区分边界值,及实际场景中很多黑厂的传感器数据和正常用户差不多,分布情况极为相似,怎么准确区分这部分数据?

Hint:1、无监督问题;2、解决思路:如何区分数据;评价指标

2018.4.13 加面

告知技术已经招满了,面试官觉得我技术基础扎实,沟通能力较好,推荐到了大数据产品经理。全程聊技术,不过更侧重问如何想到解决思路,基于业务怎么获取特征.......

2018.4.14 hr面

其实是比较轻松地聊天,但临时提前面试,加之痛经,面到中途还去厕所吐了,和男面试官只能说是晕车,好尴尬......


华为——算法岗

2018.4.12 一面-二面

主要聊科研项目,一面面试官是2012实验室的,针对项目还是问了一下key point;二面面试官是海思的,搞芯片的吧,没问太多


CVTE——视觉计算

2018.4.12 一面

没有腾讯那么自我,首先让自我介绍,然后介绍科研项目;

问了机器学习算法(反正都是常规的问题):

1、RF、XGBOOST

2、L1、L2

断篇了。。。

2018.4.12 二面

1、项目介绍,主要说了GAN

2、L1正则是不是总是稀疏的

3、怎么求矩形图像内的像素和(积分图法)

2018.4.12 hr面

问的特别细致


京东——算法岗(远程面试)

2018.4.13 一面

1、pooling的作用

2、介绍一下lr

3、CNN有哪些功能层->BN的作用

4、怎么优化函数

介绍项目

手撕代码:

1、树的层次遍历;

2、带权重的树,从根节点到叶子节点,求最小路径和;

3、两有序链表的合并;

2018.4.17-二面

把话语权都丢给了你,先介绍自己,大概刚睡醒也没怎么复习,以为会被问很多,结果一上来什么都不问,有些懵逼,自我介绍->项目介绍->比赛介绍;

1、会不会分布式的数据处理?(知道spark、Hadoop这些工具,没有用过,感觉和面试官的部门不match)

2、介绍一下RF

3、介绍一下传统机器学习中的分类、聚类方法;


头条——算法岗(远程面试)

 一面

手撕代码:

1、写一个排序算法

2、单链表的打印

3、单链表的反转

机器学习算法:

1、线性回归;

2、场景题,怎么用线性回归解决

二面

项目介绍

1、XGBOOST怎么分裂结点(自定义的增益);

2、XGBOOST可不可以实现分布式->怎么实现;

3、XGBOOST特征筛选时的输入输出;

4、MLE、MAP的区别于联系

手撕代码:

5层CNN,在BP时倒数第一层和倒数第二层的参数更新



阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页