Matlab中的六种分类器

首先,对于所有分类器,先将数据属性归一化。

在下文中,训练数据标签为train_label (nx1向量,n为训练样本数量),训练数据属性为train_data(nx4矩阵,n为训练数据数量);

测试数据标签为test_label (nx1向量,n为测试样本数量),测试数据属性为test_data(nx4矩阵,n为测试数据数量);

 

 

1.SVM

 

训练及分类语句:

result = multisvm(train_data, train_label, test_data)

 

2.RBF

训练集为20,测试集为40时,准确率为50%左右

训练集为40,测试集为20时,准确率可达90% (如果可以,建议交换一下测试集合和训练集)

首先将标签转化为向量表示:

0-[1,0,0,0,0]

2-[0,1,0,0,0]

4-[0,0,1,0,0]

6-[0,0,0,1,0]

8-[0,0,0,0,1]

 

上述转换可以通过以下程序实现:

label = zeros(40,5);

for i = 1 : 40

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值