[Python聚类] K-Means聚类算法分类

该博客介绍了使用K-Means聚类算法对餐饮客户的消费行为进行分类,通过分析消费时间间隔、频率和总金额,将客户分为高消费、中等消费和低消费三个群体,从而评估其价值。
摘要由CSDN通过智能技术生成

根据数据将客户分类成不同客户群,并评价这些客户群的价值。

数据示例

部分餐饮客户的消费行为特征数据如下:
R最近一次消费时间间隔
F消费频率
M消费总金额
这里写图片描述

方法

采用K-Means聚类算法,设定聚类个数为3,最大迭代次数为500次,距离函数取欧式距离。

代码实现

#-*- coding: utf-8 -*-
#使用K-Means算法聚类消费行为特征数据

import pandas as pd

#参数初始化
inputfile = '../data/consumption_data.xls' #销量及其他属性数据
outputfile = '../tmp/data_type.xls' #保存结果的文件名
k = 3 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值