个性推荐系统基于元学习的场景化 | KDD 2019

传统的推荐算法,比如协同过滤算法,往往都是在单一的情景下、对固定的用户和商品集合的推荐。然而,在一个Web应用中往往存在多个需要进行推荐的场景。比如在淘宝APP中,经常会有不同的分页面来展示满足不同需求的商品,每个分页面都需要向用户提供个性化的推荐来最大化用户的购买行为。同时,不同推荐场景的背景信息对提供推荐可能非常关键。比如在双11购物节,用户为了“拼单”会购买很多平常不会购买的商品。在这种场景下用户的行为模式就会与平常出现比较大的差异。

tt11.png

为用户提供不同场景下的推荐有如下几个挑战。首先是场景的冷启动问题。在现实中场景受到的关注往往是符合长尾效应的,有很大一部分场景在启动初期得到的关注较少,这意味着在该场景下的训练数据较少,对于目前已有的推荐算法来说是一个很大的挑战。其次是用户偏好的迁移问题。对于绝大多数的场景来说,只有很少一部分用户在当前场景下是有过交互数据的。而大部分用户在该场景下都属于新用户。因此我们需要从该用户在其他场景下的偏好来推断出用户在当前场景下的偏好。最后是不同场景下超参数的选择问题

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
音乐推荐系统已经成为了现代音乐服务的重要组成部分。这些系统通过分析用户的听歌历史、评分、喜好等信息,为用户推荐最符合其口味的音乐。 本文将介绍一种基于深度学习的音乐推荐系统的设计与实现。该系统使用卷积神经网络(CNN)和循环神经网络(RNN)进行特征提取和建模,使用推荐算法生成最终的推荐结果。 1. 数据收集和预处理 在构建音乐推荐系统前,需要收集和处理大量的音乐数据。这些数据包括歌曲的数据(如歌曲名、歌手名、专辑名、发行时间等)、歌曲的音频特征(如频谱图、音调、音高、节奏等)以及用户的听歌历史、评分、喜好等信息。 为了训练模型,需要将这些数据进行预处理和清洗。这包括去除重复数据、缺失值填充、标准等操作。 2. 特征提取和建模 为了将音乐数据转为可供模型使用的特征,需要进行特征提取和建模。在本文中,我们使用卷积神经网络和循环神经网络进行特征提取和建模。 卷积神经网络可用于提取音乐的时频特征,例如频谱图。这些特征可以用于表示音乐的节奏、音调、音高等属性。通过卷积层和池层的组合,可以有效地提取音乐的局部和全局特征。 循环神经网络可用于建模音乐的序列特征,例如音符序列、歌词序列等。通过LSTM或GRU等循环单,可以捕捉音乐序列的长期依赖关系。 通过将卷积神经网络和循环神经网络结合使用,可以将音乐的时频特征和序列特征结合起来,提高模型的推荐精度。 3. 推荐算法 最后,需要使用推荐算法将模型生成的特征与用户的喜好进行匹配,生成最终的推荐结果。常见的推荐算法包括基于内容的推荐、协同过滤推荐、混合推荐等。 在本文中,我们使用基于内容的推荐算法。该算法基于音乐的特征向量进行推荐,可以很好地解决冷启动问题和推荐偏差问题。 4. 总结 基于深度学习的音乐推荐系统可以通过对音乐数据进行特征提取和建模,以及使用推荐算法生成最终的推荐结果,提高音乐服务的用户体验。本文介绍了一种基于卷积神经网络和循环神经网络的音乐推荐系统的设计与实现,希望能为相关研究和实践提供参考。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值