机器学习-TensorFlow应用之classification和ROC curve

本文介绍了TensorFlow在classification问题中的应用,包括binary和multi_class分类,并对比了与linear regression的区别。重点讲解了classifier模型的定义、预测结果的结构,以及评价模型性能的Accuracy、AUC-ROC曲线和Log Loss。强调了在类别不平衡数据集上,Accuracy可能带来的误导,并详细阐述了AUC-ROC曲线的计算和意义。
摘要由CSDN通过智能技术生成
  • 概述

前面几节讲的是linear regression的内容,这里咱们再讲一个非常常用的一种模型那就是classification,classification顾名思义就是分类的意思,在实际的情况是非常常用的,例如咱们可以定义房价是否过高,如果房价高于100万,则房价过高,设置成true;如果房价低于100万,则房价不高,target就可以设置成false。这里的target就只有2种,分别只有True和False,而不像咱们的的linear regression那样target是连续的。在实际的应用中,这是有非常广泛的应用的,这一节的第一部分主要是讲如何用TensorFlow来训练一个classifier模型来预测classification problems。第二部分主要解释一下measure classification模型的的方法,那就是ROC curve。在linear regression中咱们知道有MAE,MSE等等一些列的方式来判断咱们的模型的表现怎么样,那么在classification中,MAE和MSE都不适用的,那么咱们用什么measurement来判断咱们的模型好不好呢?这时候就需要介绍咱们的ROC curve了。

  • TensorFlow应用之Classification

如果咱们的target只有2个(True/False 或者 1/0等等),这种情况咱们一般称之为binary classification problem;如果咱们的target的数量大于2,咱们一般称之为multi_class classification problem。这两种方式无论是哪一种,在咱们用TensorFlow训练的时候,它的的API都是一样的,只是multi-class需要在定义模型的的时候设置一个n_classes参数而已,其他都一样。另外的建模过程跟前面章节说的一样,这一节主要介绍一下他在TensorFlow的应用中跟linear regression的区别,所以我就不会展示整个建模的过程,只会展示他们的不同。第一个不同就是模型定义的时候不同,那么现在来看一下吧

linear_classifier = tf.estimator.LinearClassifier(feature_columns =
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值