Python 安装和配置flask, flask_cors

一.python安装:

1,打开Python官网Welcome to Python.org,点击进入到下载页面

2,根据自己的电脑系统windows还是Mac,选择下载的文件,本人电脑是windows的,

3,选择64位还是32位,点击下载.

4,选择保存的文件位置,点击确定

5,找到刚下载的pyhton.exe安装包,右键用管理员的方式打开

6,如图进入到安装页面可以勾上Add python.exe to PATH ,意思是将python.exe主程序注册到系统环境变量PATH中;可以省去后边配置环境变量了,Use admin privileges when installing py.exe,是指安装py.exe主文件是用管理员的身份运行,选择Customize installation 选择自定义安装

7,如图: 默认勾选全部的选项,点击Next进行下一步,

8,如图选择自定义安装路径本人一般安装在"C:\Program Files\Software\python"路径下,点击install按钮进行安装

9.安装进行中

10,安装结束窗口

二,配置环境变量,

1,如图打开电脑设置依次选择"关于","高级系统设置","环境变量","编辑"按钮,

2,在PATH窗口中选择"新建",将Python.exe安装路径"C:\Program Files\Software\python"和Scripts路径"C:\Program Files\Software\python\Scripts"复制下来,粘贴到新建的PATH窗口中,环境变量就配置好了.

3,关掉之前安装python的窗口,

三:检查Python安装和环境变量,

1,打开windows中的powershell窗口,选择其中一种就可以,如一管理员的方式打开:

2,在powershell窗口中依次输入python --version和pip 分别返回如图结果说明python安装和环境变量配置成功,(python --version 此命令中是两个中划线"--")

四:安装flask和flask_cors(flask_cors是配置跨域允许)

1,找到本地项目在项目地址中输入cmd命令

3,如图在新的窗口中输入"pip install flask flask_cors" 命令安装flask 和flask_cors库,回车确定,如图之前安装了因此显示环境已经安装过了,卸载一下,

4.输入"pip uninstall flask flask_cors", 系统会询问将移除flask库选择Y,即yes,N即NO.

5,输入pip install flask flask_cors 命令重新安装,如图表示flask和flask_cos安装好了

6,找到本地项目如本人项目 D3项目切换到python main.py 如图说明服务启动成功 

尝试访问一下,访问成功

### 关于线性代数中三重根对应的特征向量特征值 #### 三重根的定义及其特性 当一个矩阵 \( A \) 的某个特征多项式的根是一个三次重复的根时,这个根被称为该矩阵的三重特征值。对于任意方阵而言,如果存在一个 k 重特征值,则其最多可以拥有 k 个线性无关的特征向量[^1]。 #### 计算方法概述 为了找到属于给定三重特征值的所有可能的线性独立特征向量,通常采用如下两种主要的方法: - **基础解系法** 对应于特定特征值 λ 的齐次线性方程组 (A - λI)x = 0 可能会有多个自由变量。通过求解此系统的通解来获得一组基底作为这些特征向量的基础解系。这一步骤涉及到高斯消元或其他适当的技术以简化增广矩阵并识别出所有的基本未知数以及它们的关系。 - **幂迭代改进算法(针对某些特殊情况)** 如果已知至少有一个非零向量 v 是对应于三重特征值 λ 的特征向量之一,并且希望寻找其他潜在的相关联但不同的特征向量 w ,那么可以通过构建新的序列 {v, Av, ..., Akv} 并对其进行正交化处理得到额外的候选者。然而这种方法并不总是适用,特别是在面对更复杂的结构或数值稳定性问题的时候[^3]。 #### 实际操作示例 考虑下面的例子说明如何具体执行上述过程: 假设我们有这样一个具体的矩阵 \( A \),它具有形式为 \( p(\lambda)=(\lambda-\mu)^3=det(A-\lambda I)\) 的特征多项式,其中 μ 表示那个唯一的三重特征值。现在要找出所有与之关联的特征向量。 ```python import numpy as np # 假设这是我们的输入矩阵 A 它的唯一三重特征值 mu A = np.array([[...], [...]]) mu = ... def find_eigenvectors_for_triple_root(matrix, triple_value): """ 寻找对应于指定三重特征值的所有线性独立特征向量 参数: matrix (numpy.ndarray): 输入矩阵 triple_value (float): 已知的三重特征值 返回: list of numpy.ndarray: 所有的线性独立特征向量列表 """ # 构造辅助矩阵 M=(matrix-triple_value*I) identity_matrix = np.eye(len(matrix)) auxiliary_matrix = matrix - triple_value * identity_matrix # 使用SVD分解获取核空间的一组标准正交基 _, singular_values, vh = np.linalg.svd(auxiliary_matrix) rank_of_M = sum(singular_values > 1e-8) # 判断秩的有效维度数量 null_space_basis_vectors = vh.T[:, -(len(vh)-rank_of_M):] return [vector.reshape(-1,) for vector in null_space_basis_vectors] # 调用函数计算结果 resulting_vectors = find_eigenvectors_for_triple_root(A, mu) print(resulting_vectors) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值