自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

码python的Vinsmoke

在博客中分享一些学习python中的笔记和有趣的东西,初入菜j一枚,欢迎批评指正

  • 博客(67)
  • 资源 (4)
  • 收藏
  • 关注

原创 Seq2Seq聊天机器人

Seq2Seq聊天机器人基本逻辑实现config.pyimport pickle import torchdevice = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')"""word2sequence"""chatbot_train_batch_size = 200chatbot_test_batch_size = 300input_ws = pickle.load(open('./model/ws_

2020-11-30 20:16:19 43

原创 NLP-HMM模型、维特比算法、Baum-Welch算法

马尔科夫链在机器学习算法中,马尔可夫链(Markov chain)是个很重要的概念。马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名。1 简介马尔科夫链即为状态空间中从一个状态到另一个状态转换的随机过程。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆.

2020-11-17 21:12:35 97 3

原创 NLP-EM算法

初识EM算法EM算法也称期望最大化(Expectation-Maximum,简称EM)算法。它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM)等等。EM算法是一种迭代优化策略,由于它的计算方法中每一次迭代都分两步,其中一个为期望步(E步),另一个为极大步(M步),所以算法被称为EM算法(Expectation-Maximization Algorithm)。EM算法受到缺失思想影响,最初是为了解决数据缺失情况下的参数估计问题,其算法基础和收敛有效性等...

2020-11-17 19:13:54 54 1

原创 NLP-朴素贝叶斯

朴素贝叶斯算法简介 </section> </div> </div> <section class="normal" id="section-"> &...

2020-11-16 23:27:39 59

原创 NLP在线医生(三)

7.1 在线部分简要分析学习目标:了解在线部分的核心组成.了解各个核心组成部分的作用.在线部分架构图:在线部分简要分析:根据架构图,在线部分的核心由三个服务组成,分别是werobot服务,主要逻辑服务,句子相关模型服务. 这三个服务贯穿连接整个在线部分的各个模块.werobot服务作用:用于连接微信客户端与后端服务, 向主要逻辑服务发送用户请求,并接收结构返回给用户.主要逻辑服务作用:用于处理核心业务逻辑, 包括会话管理,请求句子相关模型

2020-11-16 21:05:54 140

原创 NLP在线医生-BiLSTM+CRF命名实体识别(二)

6.1 命名实体识别介绍学习目标:了解什么是命名实体识别了解命名实体识别的作用了解命名实体识别常用方法了解医学文本特征什么是命名实体识别:命名实体识别(Named Entity Recognition,NER)就是从一段自然语言文本中找出相关实体,并标注出其位置以及类型。是信息提取, 问答系统, 句法分析, 机器翻译等应用领域的重要基础工具, 在自然语言处理技术走向实用化的过程中占有重要地位. 包含行业, 领域专有名词, 如人名, 地名, 公司名, 机构名, 日期, 时间,

2020-11-14 23:43:45 513 6

原创 NLP在线医生(一)

1.1 背景介绍学习目标:了解智能对话系统的相关背景知识.掌握使用Unit对话API.什么是智能对话系统?随着人工智能技术的发展, 聊天机器人, 语音助手等应用在生活中随处可见, 比如百度的小度, 阿里的小蜜, 微软的小冰等等. 其目的在于通过人工智能技术让机器像人类一样能够进行智能回复, 解决现实中的各种问题.从处理问题的角度来区分, 智能对话系统可分为:任务导向型: 完成具有明确指向性的任务, 比如预定酒店咨询, 在线问诊等等.非任务导向型: 没有明确目

2020-11-09 23:13:43 413

原创 莎士比亚风格的文本生成任务

莎士比亚风格的文本生成任务 学习目标¶了解文本生成任务和相关数据集.掌握使用GRU模型实现文本生成任务的过程.任务说明¶这是一项使用GRU模型的文本生成任务,文本生成任务是NLP领域最具有挑战性的任务之一,我们将以一段文本或字符为输入,使用模型预测之后可能出现的文本内容,我们希望这些文本内容符合语法并能保持语义连贯性。但是到目前为止,这是一项艰巨的任务,因此从实用角度出发,更多的尝试在与艺术类文本相关的任务中,如我们的当前案例,就是使用莎士比亚的剧本作为原始数据。数据集...

2020-11-07 18:09:38 125

原创 BERT,Transformer的模型架构与详解

BERT,Transformer的模型架构与详解 1.1 认识BERT学习目标了解什么是BERT.掌握BERT的架构.掌握BERT的预训练任务.什么是BERTBERT是2018年10月由Google AI研究院提出的一种预训练模型.BERT的全称是Bidirectional Encoder Representation from Transformers.BERT在机器阅读理解顶级水平测试SQuAD1.1中表现出惊人的成绩: 全部两个衡量指标上全面超越人类, 并且在11种不同..

2020-11-06 22:31:33 134

原创 迁移学习

迁移学习 2.1 迁移学习理论学习目标了解迁移学习中的有关概念.掌握迁移学习的两种迁移方式.迁移学习中的有关概念:预训练模型微调微调脚本预训练模型(Pretrained model):一般情况下预训练模型都是大型模型,具备复杂的网络结构,众多的参数量,以及在足够大的数据集下进行训练而产生的模型. 在NLP领域,预训练模型往往是语言模型,因为语言模型的训练是无监督的,可以获得大规模语料,同时语言模型又是许多典型NLP任务的基础,如机器翻译,文本生成,阅读理解等,...

2020-11-06 21:43:14 101

原创 fasttext文本分类、训练词向量、词向量迁移

fasttext工具的使用 1.1 认识fasttext工具学习目标了解fasttext工具的作用.了解fasttext工具的优势及其原因.掌握fasttext的安装方法.作为NLP工程领域常用的工具包, fasttext有两大作用:进行文本分类训练词向量fasttext工具包的优势:正如它的名字, 在保持较高精度的情况下, 快速的进行训练和预测是fasttext的最大优势.fasttext优势的原因:fasttext工具包中内含的fast...

2020-11-05 20:53:48 190 2

原创 使用Transformer构建语言模型

Transformer经典案例 3.1 使用Transformer构建语言模型学习目标 了解有关语言模型的知识.掌握使用Transformer构建语言模型的实现过程.什么是语言模型:以一个符合语言规律的序列为输入,模型将利用序列间关系等特征,输出一个在所有词汇上的概率分布.这样的模型称为语言模型. # 语言模型的训练语料一般来自于文章,对应的源文本和目标文本形如:src1 = "I can do" tgt1 = "can do it"src2 = "can do it".

2020-11-04 20:43:17 153

原创 Transformer介绍及架构解析

第一章:Transformer背景介绍 1.1 Transformer的诞生2018年10月,Google发出一篇论文《BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding》, BERT模型横空出世, 并横扫NLP领域11项任务的最佳成绩!论文地址: https://arxiv.org/pdf/1810.04805.pdf而在BERT中发挥重要作用的结构就是Transformer..

2020-11-03 22:55:27 281

原创 seq2seq模型架构实现英译法任务

2.2 使用seq2seq模型架构实现英译法任务学习目标:更深一步了解seq2seq模型架构和翻译数据集.掌握使用基于GRU的seq2seq模型架构实现翻译的过程.掌握Attention机制在解码器端的实现过程.seq2seq模型架构:seq2seq模型架构分析:从图中可知, seq2seq模型架构, 包括两部分分别是encoder(编码器)和decoder(解码器), 编码器和解码器的内部实现都使用了GRU模型, 这里它要完成的是一个中文到英文的翻译: 欢迎 来 北京 -

2020-10-31 23:57:54 137

原创 使用RNN模型构建人名分类器

2. RNN经典案例 2.1 使用RNN模型构建人名分类器学习目标:了解有关人名分类问题和有关数据.掌握使用RNN构建人名分类器实现过程.关于人名分类问题:以一个人名为输入, 使用模型帮助我们判断它最有可能是来自哪一个国家的人名, 这在某些国际化公司的业务中具有重要意义, 在用户注册过程中, 会根据用户填写的名字直接给他分配可能的国家或地区选项, 以及该国家或地区的国旗, 限制手机号码位数等等.人名分类数据:数据下载地址: https://downlo...

2020-10-31 16:11:41 215

原创 RNN, LSTM, GRU模型的作用, 构建, 优劣势比较,attention机制

1. RNN架构解析1.1 认识RNN模型学习目标了解什么是RNN模型.了解RNN模型的作用.了解RNN模型的分类.什么是RNN模型RNN(Recurrent Neural Network), 中文称作循环神经网络, 它一般以序列数据为输入, 通过网络内部的结构设计有效捕捉序列之间的关系特征, 一般也是以序列形式进行输出.一般单层神经网络结构:RNN单层网络结构:以时间步对RNN进行展开后的单层网络结构:RNN的循环机制使模型隐层上一时间步产..

2020-10-29 22:48:14 522

原创 HMM与CRF

HMM与CRF 认识HMM与CRF模型学习目标了解HMM与CRF模型的输入和输出.了解HMM与CRF模型的作用.了解HMM与CRF模型的使用过程.了解HMM与CRF模型之间的差异.了解HMM和CRF的发展现状.HMM模型的输入和输出HMM(Hidden Markov Model), 中文称作隐含马尔科夫模型, 因俄国数学家马尔可夫而得名. 它一般以文本序列数据为输入, 以该序列对应的隐含序列为输出.什么是隐含序列:序列数据中每个单元包含的隐性信息, 这些隐性信息...

2020-10-29 19:00:29 22

原创 文本处理基本方法,文本数据分析、增强方法

windows 下 vim 安装 第一章:文本预处理 1.1 认识文本预处理文本预处理及其作用文本语料在输送给模型前一般需要一系列的预处理工作, 才能符合模型输入的要求, 如: 将文本转化成模型需要的张量, 规范张量的尺寸等, 而且科学的文本预处理环节还将有效指导模型超参数的选择, 提升模型的评估指标.文本预处理中包含的主要环节文本处理的基本方法文本张量表示方法文本语料的数据分析文本特征处理数据增强方法文本处理的基本方法分词词性标注命名实体识别- NER

2020-10-29 18:43:02 91

原创 新闻主题分类任务

新闻主题分类任务 2.1 新闻主题分类任务学习目标了解有关新闻主题分类和有关数据.掌握使用浅层网络构建新闻主题分类器的实现过程.关于新闻主题分类任务:以一段新闻报道中的文本描述内容为输入, 使用模型帮助我们判断它最有可能属于哪一种类型的新闻, 这是典型的文本分类问题, 我们这里假定每种类型是互斥的, 即文本描述有且只有一种类型.新闻主题分类数据:通过torchtext获取数据:# 导入相关的torch工具包import torchimport torc...

2020-10-29 00:03:14 64

原创 NLP学习笔记-Pytorch框架(补充)

PDFPytorch初步应用 使用Pytorch构建一个神经网络学习目标掌握用Pytorch构建神经网络的基本流程.掌握用Pytorch构建神经网络的实现过程.关于torch.nn:使用Pytorch来构建神经网络, 主要的工具都在torch.nn包中.nn依赖于autograd来定义模型, 并对其自动求导.构建神经网络的典型流程:定义一个拥有可学习参数的神经网络遍历训练数据集处理输入数据使其流经神经网络计算损失值将网络参数的梯度进行反向传播以一定的.

2020-10-27 19:05:20 29

原创 B站【1espresso】NLP - transform、bert、HMM、NER课件

git地址传送门传送门2(含bert情感分析)仅学习使用,侵删中文自然语言处理Transformer模型(一)transformer是谷歌大脑在2017年底发表的论文attention is all you need中所提出的seq2seq模型. 现在已经取得了大范围的应用和扩展, 而BERT就是从transformer中衍生出来的预训练语言模型.目前transformer模型已经得到广泛认可和应用, 而应用的方式主要是先进行预训练语言模型, 然后把预训练的模型适配给下游任务, 以完成各种.

2020-10-27 00:32:56 195 2

原创 生成对抗神经网络 - GAN

原理解析损失函数import torchfrom torch import autogradinput = autograd.Variable(torch.tensor([[ 1.9072, 1.1079, 1.4906], [-0.6584, -0.0512, 0.7608], [-0.0614, 0.6583, 0.1095]]), requires_grad=True)print(input)print('-'*100)from torch

2020-10-25 17:55:53 47

原创 基于pytorch的文本分类

目录结构text│ run.py│ train_eval.py│ utils.py│ utils_fasttext.py│├─models│ │ TextCNN.py│ │ TextRNN.py│ ││ └─__pycache__│ TextCNN.cpython-36.pyc│ TextRNN.cpython-36.pyc│├─THUCNews│ ├─data│ │ class.txt│ │

2020-10-25 03:09:22 211

原创 Mnist分类任务

Mnist分类任务:网络基本构建与训练方法,常用函数解析torch.nn.functional模块nn.Module模块读取Mnist数据集会自动进行下载%matplotlib inlinefrom pathlib import Pathimport requestsDATA_PATH = Path("data")PATH = DATA_PATH / "mnist"PATH.mkdir(parents=True, exist_ok=True)URL = "

2020-10-22 01:39:31 50

原创 基于pytorch 构建神经网络进行气温预测

import numpy as npimport pandas as pd import matplotlib.pyplot as pltimport torchimport warningswarnings.filterwarnings('ignore')%matplotlib inlinepath = 'E:/nlp课件/test_data/temps.csv'features = pd.read_csv(path)features.head()

2020-10-21 23:14:15 202 3

原创 PyTorch Hub

GITHUB:https://github.com/pytorch/hub模型:https://pytorch.org/hub/research-modelsFacebook官方博客表示,PyTorch Hub是一个简易API和工作流程,为复现研究提供了基本构建模块,包含预训练模型库。并且,PyTorch Hub还支持Colab,能与论文代码结合网站Papers With Code集成,用于更广泛的研究。发布首日已有18个模型“入驻”,获得英伟达官方力挺。而且Facebook还鼓励论文发布者把自己的模

2020-10-21 21:44:35 55

原创 NLP学习笔记-QA机器人(七)

问答机器人介绍1. 问答机器人在前面的课程中,我们已经对问答机器人介绍过,这里的问答机器人是我们在分类之后,对特定问题进行回答的一种机器人。至于回答的问题的类型,取决于我们的语料。当前我们需要实现的问答机器人是一个回答编程语言(比如python是什么,python难么等)相关问题的机器人2. 问答机器人的实现逻辑主要实现逻辑:从现有的问答对中,选择出和问题最相似的问题,并且获取其相似度(一个数值),如果相似度大于阈值,则返回这个最相似的问题对应的答案问答机器人的实现可以大致分为三步步骤:对问

2020-09-22 15:30:13 314 3

原创 NLP学习笔记-Seq2Seq实现聊天机器人(六)

Seq2Seq实现闲聊机器人1. 准备训练数据单轮次的聊天数据非常不好获取,所以这里我们从github上使用一些开放的数据集来训练我们的闲聊模型数据地址:https://github.com/codemayq/chaotbot_corpus_Chinese主要的数据有两个:小黄鸡的聊天语料:噪声很大微博的标题和评论:质量相对较高2. 数据的处理和保存由于数据中存到大量的噪声,可以对其进行基础的处理,然后分别把input和target使用两个文件保存,即input中的第N行尾

2020-09-20 14:51:54 192

原创 NLP学习笔记-隐马尔可夫(HMM)、最大熵马尔科夫模型(MEMM)、条件随机场(CRF)、最大匹配法(八)

隐马尔可夫1. 自动机自动机:(又称为 有限自动机,有限状态自动机,FSA)是表示有限个状态以及在这些状态之间的转移和动作等行为的数学模型。例如:我们常用的正则表达式就是一种用来描述字符串出现字符的自动机。假如我们有正则表达式:baa+!,表示的是ba后面有1个或这多个a,最后是一个感叹号。我们可以把上述的自动机用图来展示,如下:自动机从初始状态q0开始,反复进行下面的过程:找到第一个字母b,如果找到b那么进入到下一个状态,再去寻找下一个状态需要的字母,指导进行接收状态q4。我们可以使用状

2020-09-19 00:26:23 183

原创 NLP学习笔记-Seq2Seq模型(五)

闲聊机器人的介绍介绍在项目准备阶段我们知道,用户说了一句话后,会判断其意图,如果是想进行闲聊,那么就会调用闲聊模型返回结果,这是我们会在项目中实现的功能。目前市面上的常见闲聊机器人有微软小冰这种类型的模型,很久之前还有小黄鸡这种体验更差的模型常见的闲聊模型都是一种seq2seq的结构,在后面的课程中我们会学习并使用seq2seq来实现我们的闲聊机器人Seq2Seq模型的原理1. Seq2Seq的介绍Sequence to sequence (seq2seq)是由encoder(编码器)和de

2020-09-15 23:04:33 160

原创 NLP学习笔记-FastText文本分类(四)

分类的目的和分类的方法1. 文本分类的目的回顾之前的流程,我们可以发现文本分类的目的就是为了进行意图识别在当前我们的项目的下,我们只有两种意图需要被识别出来,所以对应的是2分类的问题可以想象,如果我们的聊天机器人有多个功能,那么我们需要分类的类别就有多个,这样就是一个多分类的问题。例如,如果希望聊天机器人能够播报当前的时间,那么我们就需要准备关于询问时间的语料,同时其目标值就是一个新的类别。在训练后,通过这个新的模型,判断出用户询问的是当前的时间这个类别,那么就返回当前的时间。同理,如果还希望聊天

2020-09-13 17:48:45 199

原创 NLP学习笔记-聊天机器人项目准备(三)

走进聊天机器人1. 目前企业中的常见的聊天机器人QA BOT(问答机器人):回答问题代表 :智能客服、比如:提问和回答TASK BOT (任务机器人):帮助人们做事情代表:siri比如:设置明天早上9点的闹钟CHAT BOT(聊天机器人):通用、开放聊天代表:微软小冰2. 常见的聊天机器人怎么实现的2.1 问答机器人的常见实现手段信息检索、搜索 (简单,效果一般,对数据问答对的要求高)关键词:tfidf、SVM、朴素贝叶斯、RNN、CNN知识图谱(相

2020-09-12 23:19:07 253 1

原创 NLP学习笔记-循环神经网络RNN、情感分类、LSTM(二)

循环神经网络和自然语言处理介绍1. 文本的tokenization1.1 概念和工具的介绍tokenization就是通常所说的分词,分出的每一个词语我们把它称为token。常见的分词工具很多,比如:jieba分词:https://github.com/fxsjy/jieba清华大学的分词工具THULAC:https://github.com/thunlp/THULAC-Python1.2 中英文分词的方法把句子转化为词语比如:我爱深度学习 可以分为[我,爱, 深度学习]把句

2020-09-09 23:24:05 677

原创 NLP学习笔记-Pytorch框架(一)

深度学习的介绍1. 深度学习的概念深度学习(deep learning)是机器学习的分支,是一种以人工神经网络为架构,对数据进行特征学习的算法。2. 机器学习和深度学习的区别2.1 区别1 :特征提取从特征提取的角度出发:机器学习需要有人工的特征提取的过程深度学习没有复杂的人工特征提取的过程,特征提取的过程可以通过深度神经网络自动完成2.2 区别2:数据量从数据量的角度出发:深度学习需要大量的训练数据集,会有更高的效果深度学习训练深度神经网络需要大量的算力,因为其中有更多的参

2020-09-07 00:41:23 453

原创 推荐系统lambda架构学习笔记之电商推荐案例(六)

一、个性化电商广告推荐系统介绍1.1数据集介绍Ali_Display_Ad_Click是阿里巴巴提供的一个淘宝展示广告点击率预估数据集数据集来源:天池竞赛原始样本骨架raw_sample淘宝网站中随机抽样了114万用户8天内的广告展示/点击日志(2600万条记录),构成原始的样本骨架。 字段说明如下:user_id:脱敏过的用户ID;adgroup_id:脱敏过的广告单元ID;time_stamp:时间戳;pid:资源位;noclk:为1代表没有点击;为0代表点击;clk:为

2020-08-30 21:45:13 78

原创 推荐系统lambda架构学习笔记之spark(五)

sparkspark概述spark是基于内存的计算引擎,它的计算速度非常快。但是仅仅只涉及到数据的计算,并没有涉及到数据的存储。MapReduce框架局限性1,Map结果写磁盘,Reduce写HDFS,多个MR之间通过HDFS交换数据2,任务调度和启动开销大3,无法充分利用内存4,不适合迭代计算(如机器学习、图计算等等),交互式处理(数据挖掘)5,不适合流式处理(点击日志分析)6,MapReduce编程不够灵活,仅支持Map和Reduce两种操作Hadoop生态圈批处理:Ma

2020-08-30 14:15:29 202

原创 推荐系统lambda架构学习笔记之Hive&HBase(四)

HiveHive简介Hive 由 Facebook 实现并开源,是基于 Hadoop 的一个数据仓库工具,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能,底层数据是存储在 HDFS 上。Hive 本质: 将 SQL 语句转换为 MapReduce 任务运行,使不熟悉 MapReduce 的用户很方便地利用 HQL 处理和计算 HDFS 上的结构化的数据,是一款基于 HDFS 的 MapReduce 计算框架主要用途:用来做离线数据分析,比直接用 MapReduc

2020-08-26 22:41:41 241

原创 推荐系统lambda架构学习笔记之Hadoop、HDFS、YARN&MapReduce(三)

HadoopHadoop介绍Hadoop名字的由来作者:Doug cuttingHadoop项目作者的孩子给一个棕黄色的大象样子的填充玩具的命名Hadoop的概念:Apache™ Hadoop® 是一个开源的, 可靠的(reliable), 可扩展的(scalable)分布式计算框架允许使用简单的编程模型跨计算机集群分布式处理大型数据集可扩展: 从单个服务器扩展到数千台计算机,每台计算机都提供本地计算和存储可靠的: 不依靠硬件来提供高可用性(high-availabili

2020-08-23 22:16:47 153

原创 推荐系统lambda架构学习笔记之推荐系统算法(二)

推荐系统算法随着机器学习技术的逐渐发展与完善,推荐系统也逐渐运用机器学习的思想来进行推荐。将机器学习应用到推荐系统中的方案真是不胜枚举。以下对Model-Based CF算法做一个大致的分类:基于分类算法、回归算法、聚类算法基于矩阵分解的推荐基于神经网络算法基于图模型算法接下来重点学习以下几种应用较多的方案:基于回归模型的协同过滤推荐基于矩阵分解的协同过滤推荐基于回归模型的协同过滤推荐如果我们将评分看作是一个连续的值而不是离散的值,那么就可以借助线性回归思想来预测目标用户对某物品

2020-08-20 21:07:13 234

原创 推荐系统lambda架构学习笔记之推荐系统(一)

推荐系统个性化推荐(推荐系统)经历了多年的发展,已经成为互联网产品的标配,也是AI成功落地的分支之一,在电商(淘宝/京东)、资讯(今日头条/微博)、音乐(网易云音乐/QQ音乐)、短视频(抖音/快手)等热门应用中,推荐系统都是核心组件之一。什么是推荐系统没有明确需求的用户访问了我们的服务, 且服务的物品对用户构成了信息过载, 系统通过一定的规则对物品进行排序,并将排在前面的物品展示给用户,这样的系统就是推荐系统信息过载 & 用户需求不明确分类⽬录(1990s):覆盖少量热门⽹站。典型应用:

2020-08-18 22:50:07 489

python全栈笔记.zip

本人近半年自学python 方面全套的学习笔记。人生苦短,我用python。包含web、前端、django、flask、机器学习、深度学习、数据分析,还有常用如mysql、redis数据库相关材料

2020-04-19

python机器学习笔记.zip

本人近半年自学python 方面全套的学习笔记。人生苦短,我用python。包含web、前端、django、flask、机器学习、深度学习、数据分析,还有常用如mysql、redis数据库相关材料

2020-04-19

python数据分析笔记.zip

本人近半年自学python 方面全套的学习笔记。人生苦短,我用python。包含web、前端、django、flask、机器学习、深度学习、数据分析,还有常用如mysql、redis数据库相关材料

2020-04-19

python基础.zip

本人近半年自学python 方面全套的学习笔记。人生苦短,我用python。包含web、前端、django、flask、机器学习、深度学习、数据分析,还有常用如mysql、redis数据库相关材料

2020-04-19

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除