NLP-HMM模型、维特比算法、Baum-Welch算法

马尔科夫链


在机器学习算法中,马尔可夫链(Markov chain)是个很重要的概念。马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:Андрей Андреевич Марков)得名。

1 简介

马尔科夫链即为状态空间中从一个状态到另一个状态转换的随机过程。

  • 该过程要求具备“无记忆”的性质:
    • 下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马尔可夫性质
  • 马尔科夫链作为实际过程的统计模型具有许多应用。

  • 在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。

  • 状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。
  • 马尔可夫链的数学表示为:

image-20191210145302488

  • 既然某一时刻状态转移的概率只依赖前一个状态,那么只要求出系统中任意两个状态之间的转移概率,这个马尔科夫链的模型就定了。

2 经典举例

下图中的马尔科夫链是用来表示股市模型,共有三种状态:牛市(Bull market), 熊市(Bear market)和横盘(Stagnant market)。

每一个状态都以一定的概率转化到下一个状态。比如,牛市以0.025的概率转化到横盘的状态。

image-20191210145748581

  • 这个状态概率转化图可以以矩阵的形式表示。
  • 如果我们定义矩阵阵P某一位置P(i, j)的值为P(j|i),即从状态i变为状态j的概率。
  • 另外定义牛市、熊市、横盘的状态分别为0、1、2,这样我们得到了马尔科夫链模型的状态转移矩阵为:

image-20191210145843301

当这个状态转移矩阵P确定以后,整个股市模型就已经确定!


3 小结

  • 马尔科夫链即为
    • 状态空间中从一个状态到另一个状态转换的随机过程。
    • 该过程要求具备“无记忆”的性质:
      • 下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关

HMM简介


隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。

其难点是从可观察的参数中确定该过程的隐含参数。然后利用这些参数来作进一步的分析,例如模式识别。

1 简单案例

下面我们一起用一个简单的例子来阐述:

  • 假设我手里有三个不同的骰子。
    • 第一个骰子是我们平常见的骰子(称这个骰子为D6),6个面,每个面(1,2,3,4,5,6)出现的概率是1/6。
    • 第二个骰子是个四面体(称这个骰子为D4),每个面(1,2,3,4)出现的概率是1/4。
    • 第三个骰子有八个面(称这个骰子为D8),每个面(1,2,3,4,5,6,7,8)出现的概率是1/8。

image

  • 我们开始掷骰子,我们先从三个骰子里挑一个,挑到每一个骰子的概率都是1/3。
  • 然后我们掷骰子,得到一个数字,1,2,3,4,5,6,7,8中的一个。不停的重复上述过程,我们会得到一串数字,每个数字都是1,2,3,4,5,6,7,8中的一个。
  • 例如我们可能得到这么一串数字(掷骰子10次):1 6 3 5 2 7 3 5 2 4
  • 这串数字叫做可见状态链。

但是在隐马尔可夫模型中,我们不仅仅有这么一串可见状态链,还有一串隐含状态链

  • 在这个例子里,这串隐含状态链就是你用的骰子的序列。
    • 比如,隐含状态链有可能是:D6 D8 D8 D6 D4 D8 D6 D6 D4 D8

一般来说,HMM中说到的马尔可夫链其实是指隐含状态链,因为隐含状态(骰子)之间存在转换概率(transition probability)。

  • 在我们这个例子里,D6的下一个状态是D4,D6,D8的概率都是1/3。D4,D8的下一个状态是D4,D6,D8的转换概率也都一样是1/3。
  • 这样设定是为了最开始容易说清楚,但是我们其实是可以随意设定转换概率的。
    • 比如,我们可以这样定义,D6后面不能接D4,D6后面是D6的概率是0.9,是D8的概率是0.1。
    • 这样就是一个新的HMM。

同样的,尽管可见状态之间没有转换概率,但是隐含状态和可见状态之间有一个概率叫做输出概率(emission probability)。

  • 就我们的例子来说,六面骰(D6)产生1的输出概率是1/6。产生2,3,4,5,6的概率也都是1/6。
  • 我们同样可以对输出概率进行其他定义。比如,我有一个被赌场动过手脚的六面骰子,掷出来是1的概率更大,是1/2,掷出来是2,3,4,5,6的概率是1/10。

image

image

其实对于HMM来说,如果提前知道所有隐含状态之间的转换概率和所有隐含状态到所有可见状态之间的输出概率,做模拟是相当容易的。但是应用HMM模型时候呢,往往是缺失了一部分信息的。

  • 有时候你知道骰子有几种,每种骰子是什么,但是不知道掷出来的骰子序列;
  • 有时候你只是看到了很多次掷骰子的结果,剩下的什么都不知道。

如果应用算法去估计这些缺失的信息,就成了一个很重要的问题。这些算法我会在后面详细讲。

2 案例进阶

2.1 问题阐述

和HMM模型相关的算法主要分为三类,分别解决三种问题:

1)知道骰子有几种(隐含状态数量),每种骰子是什么(转换概率),根据掷骰子掷出的结果(可见状态链),我想知道每次掷出来的都是哪种骰子(隐含状态链)。

  • 这个问题呢,在语音识别领域呢,叫做解码问题。
  • 这个问题其实有两种解法,会给出两个不同的答案。每个答案都对,只不过这些答案的意义不一样。
    • 第一种解法求最大似然状态路径,说通俗点呢,就是我求一串骰子序列,这串骰子序列产生观测结果的概率最大。
    • 第二种解法呢,就不是求一组骰子序列了,而是求每次掷出的骰子分别是某种骰子的概率。比如说我看到结果后,我可以求得第一次掷骰子是D4的概率是0.5,D6的概率是0.3,D8的概率是0.2。

2)还是知道骰子有几种(隐含状态数量),每种骰子是什么(转换概率),根据掷骰子掷出的结果(可见状态链),我想知道掷出这个结果的概率。

  • 看似这个问题意义不大,因为你掷出来的结果很多时候都对应了一个比较大的概率。
  • 问这个问题的目的呢,其实是检测观察到的结果和已知的模型是否吻合。
  • 如果很多次结果都对应了比较小的概率,那么就说明我们已知的模型很有可能是错的,有人偷偷把我们的骰子給换了。

3)知道骰子有几种(隐含状态数量),不知道每种骰子是什么(转换概率),观测到很多次掷骰子的结果(可见状态链),我想反推出每种骰子是什么(转换概率)。

  • 这个问题很重要,因为这是最常见的情况。
  • 很多时候我们只有可见结果,不知道HMM模型里的参数,我们需要从可见结果估计出这些参数,这是建模的一个必要步骤。

2.2 问题解决

2.2.1 一个简单问题【对应问题二】

其实这个问题实用价值不高。由于对下面较难的问题有帮助,所以先在这里提一下。

  • 知道骰子有几种,每种骰子是什么,每次掷的都是什么骰子,根据掷骰子掷出的结果,求产生这个结果的概率。

image

  • 解法无非就是概率相乘:

image-20200205171624466

2.2.2 看见不可见的,破解骰子序列【对应问题一】

这里我说的是第一种解法,解最大似然路径问题。

举例来说,我知道我有三个骰子,六面骰,四面骰,八面骰。我也知道我掷了十次的结果

(1 6 3 5 2 7 3 5 2 4),我不知道每次用了那种骰子,我想知道最有可能的骰子序列。

其实最简单而暴力的方法就是穷举所有可能的骰子序列,然后依照上一个问题的解法把每个序列对应的概率算出来。然后我们从里面把对应最大概率的序列挑出来就行了。

如果马尔可夫链不长,当然可行。如果长的话,穷举的数量太大,就很难完成了。

另外一种很有名的算法叫做维特比算法(Viterbi algorithm). 要理解这个算法,我们先看几个简单的列子。 首先,如果我们只掷一次骰子:

image-20191210174429599

看到结果为1.对应的最大概率骰子序列就是D4,因为D4产生1的概率是1/4,高于1/6和1/8.

把这个情况拓展,我们掷两次骰子:

image-20191210174525380

结果为1,6.这时问题变得复杂起来,我们要计算三个值,分别是第二个骰子是D6,D4,D8的最大概率。显然,要取到最大概率,第一个骰子必须为D4。这时,第二个骰子取到D6的最大概率是:

image-20200205171730131

同样的,我们可以计算第二个骰子是D4或D8时的最大概率。我们发现,第二个骰子取到D6的概率最大。而使这个概率最大时,第一个骰子为D4。所以最大概率骰子序列就是D4 D6。 继续拓展,我们掷三次骰子:

image-20191210174606214

同样,我们计算第三个骰子分别是D6,D4,D8的最大概率。我们再次发现,要取到最大概率,第二个骰子必须为D6。这时,第三个骰子取到D4的最大概率是:

image-20200205171815846

同上,我们可以计算第三个骰子是D6或D8时的最大概率。我们发现,第三个骰子取到D4的概率最大。而使这个概率最大时,第二个骰子为D6,第一个骰子为D4。所以最大概率骰子序列就是D4 D6 D4。


写到这里,大家应该看出点规律了。既然掷骰子一、二、三次可以算,掷多少次都可以以此类推。

我们发现,我们要求最大概率骰子序列时要做这么几件事情。

  • 首先,不管序列多长,要从序列长度为1算起,算序列长度为1时取到每个骰子的最大概率。
  • 然后,逐渐增加长度,每增加一次长度,重新算一遍在这个长度下最后一个位置取到每个骰子的最大概率。因为上一个长度下的取到每个骰子的最大概率都算过了,重新计算的话其实不难。
  • 当我们算到最后一位时,就知道最后一位是哪个骰子的概率最大了。然后,我们要把对应这个最大概率的序列从后往前推出来。
2.2.3 谁动了我的骰子?【对应问题三】

比如说你怀疑自己的六面骰被赌场动过手脚了,有可能被换成另一种六面骰,这种六面骰掷出来是1的概率更大,是1/2,掷出来是2,3,4,5,6的概率是1/10。你怎么办么?

  • 答案很简单,算一算正常的三个骰子掷出一段序列的概率,再算一算不正常的六面骰和另外两个正常骰子掷出这段序列的概率。如果前者比后者小,你就要小心了。

比如说掷骰子的结果是:

image-20191210175136517

要算用正常的三个骰子掷出这个结果的概率,其实就是将所有可能情况的概率进行加和计算。

同样,简单而暴力的方法就是把穷举所有的骰子序列,还是计算每个骰子序列对应的概率,但是这回,我们不挑最大值了,而是把所有算出来的概率相加,得到的总概率就是我们要求的结果。这个方法依然不能应用于太长的骰子序列(马尔可夫链)。 我们会应用一个和前一个问题类似的解法,只不过前一个问题关心的是概率最大值,这个问题关心的是概率之和。解决这个问题的算法叫做前向算法(forward algorithm)。

首先,如果我们只掷一次骰子:

image-20191210175223324

看到结果为1.产生这个结果的总概率可以按照如下计算,总概率为0.18:

image-20191210175305655

把这个情况拓展,我们掷两次骰子:

image-20191210174525380

看到结果为1,6.产生这个结果的总概率可以按照如下计算,总概率为0.05:

image-20191210175345766

继续拓展,我们掷三次骰子:

image-20191210175136517

看到结果为1,6,3.产生这个结果的总概率可以按照如下计算,总概率为0.03:

image-20191210175510152

同样的,我们一步一步的算,有多长算多长,再长的马尔可夫链总能算出来的。

用同样的方法,也可以算出不正常的六面骰和另外两个正常骰子掷出这段序列的概率,然后我们比较一下这两个概率大小,就能知道你的骰子是不是被人换了。


3 小结

  • 隐马尔可夫模型(Hidden Markov Model,HMM)是统计模型,它用来描述一个含有隐含未知参数的马尔可夫过程。
  • 常见术语
    • 可见状态链
    • 隐含状态链
    • 转换概率
    • 输出概率

HMM模型基础


1 什么样的问题需要HMM模型

首先我们来看看什么样的问题解决可以用HMM模型。使用HMM模型时我们的问题一般有这两个特征:

  • 1)我们的问题是基于序列的,比如时间序列,或者状态序列。
  • 2)我们的问题中有两类数据,
    • 一类序列数据是可以观测到的,即观测序列
    • 而另一类数据是不能观察到的,即隐藏状态序列,简称状态序列

有了这两个特征,那么这个问题一般可以用HMM模型来尝试解决。这样的问题在实际生活中是很多的。

  • 比如:我现在给大家写课件,我在键盘上敲出来的一系列字符就是观测序列,而我实际想写的一段话就是隐藏状态序列,输入法的任务就是从敲入的一系列字符尽可能的猜测我要写的一段话,并把最可能的词语放在最前面让我选择,这就可以看做一个HMM模型了。
  • 再举一个,假如我上课讲课,我发出的一串连续的声音就是观测序列,而我实际要表达的一段话就是隐藏状态序列,你大脑的任务,就是从这一串连续的声音中判断出我最可能要表达的话的内容。

从这些例子中,我们可以发现,HMM模型可以无处不在。但是上面的描述还不精确,下面我们用精确的数学符号来表述我们的HMM模型。

2 HMM模型的定义

对于HMM模型,首先我们假设Q是所有可能的隐藏状态的集合,V是所有可能的观测状态的集合,即:

在这里插入图片描述

1) 齐次马尔科夫链假设。

在这里插入图片描述

2) 观测独立性假设。

在这里插入图片描述

一个HMM模型,可以由隐藏状态初始概率分布Π\PiΠ , 状态转移概率矩阵A和观测状态概率矩阵B决定

Π\PiΠ ,A决定状态序列,B决定观测序列。

因此,HMM模型可以由一个三元组λ\lambdaλ 表示如下:

  • λ=(A,B,Π)= \lambda =(A,B, \Pi )=λ=(A,B,Π)= (状态序列,观测序列,初始状态概率分布)

3 一个HMM模型实例

下面我们用一个简单的实例来描述上面抽象出的HMM模型。这是一个盒子与球的模型。

例子来源于李航的《统计学习方法》。

假设我们有3个盒子,每个盒子里都有红色和白色两种球,这三个盒子里球的数量分别是:

盒子123
红球数547
白球数563

按照下面的方法从盒子里抽球,开始的时候,

  • 从第一个盒子抽球的概率是0.2,
  • 从第二个盒子抽球的概率是0.4,
  • 从第三个盒子抽球的概率是0.4。

以这个概率抽一次球后,将球放回。

然后从当前盒子转移到下一个盒子进行抽球。规则是:

  • 如果当前抽球的盒子是第一个盒子,则以0.5的概率仍然留在第一个盒子继续抽球,以0.2的概率去第二个盒子抽球,以0.3的概率去第三个盒子抽球。
  • 如果当前抽球的盒子是第二个盒子,则以0.5的概率仍然留在第二个盒子继续抽球,以0.3的概率去第一个盒子抽球,以0.2的概率去第三个盒子抽球。
  • 如果当前抽球的盒子是第三个盒子,则以0.5的概率仍然留在第三个盒子继续抽球,以0.2的概率去第一个盒子抽球,以0.3的概率去第二个盒子抽球。

如此下去,直到重复三次,得到一个球的颜色的观测序列:

  • O={红,白,红}

注意在这个过程中,观察者只能看到球的颜色序列,却不能看到球是从哪个盒子里取出的。

那么按照我们前面HMM模型的定义,我们的观察状态集合是:

  • V={红,白},M=2

我们的隐藏状态集合是:

  • Q={盒子1,盒子2,盒子3},N=3

而观察序列和状态序列的长度为3.

初始状态分布Π\PiΠ为:

  • Π=(0.2,0.4,0.4)T\Pi =(0.2,0.4,0.4)^TΠ=(0.2,0.4,0.4)T

状态转移概率分布A矩阵为:

image-20191211111441386

观测状态概率B矩阵为:

image-20191211111505163

4 HMM观测序列的生成

在这里插入图片描述

5 HMM模型的三个基本问题

在这里插入图片描述

3 小结

  • 什么样的问题可以用HMM模型解决
    • 基于序列的,比如时间序列;
    • 问题中包含两类数据,一类是可以观测到的观测序列;另一类是不能观察到的隐藏状态序列。
  • HMM模型的两个重要假设
    • 其次马尔科夫链假设
    • 观测独立性假设
  • HMM模型的三个基本问题
    • 评估观察序列概率—— 前向后向的概率计算
    • 预测问题,也称为解码问题 ——维特比(Viterbi)算法
    • 模型参数学习问题 —— 鲍姆-韦尔奇(Baum-Welch)算法

前向后向算法评估观察序列概率


本节我们就关注HMM第一个基本问题的解决方法,即已知模型和观测序列,求观测序列出现的概率。

1 回顾HMM问题一:求观测序列的概率

在这里插入图片描述

具体暴力求解的方法是这样的:

在这里插入图片描述

2 用前向算法求HMM观测序列的概率

前向后向算法是前向算法和后向算法的统称,这两个算法都可以用来求HMM观测序列的概率。我们先来看看前向算法是如何求解这个问题的。

2.1 流程梳理

前向算法本质上属于动态规划的算法,也就是我们要通过找到局部状态递推的公式,这样一步步的从子问题的最优解拓展到整个问题的最优解。

在这里插入图片描述
在这里插入图片描述

2.2 算法总结。

在这里插入图片描述

3 HMM前向算法求解实例

这里我们用前面盒子与球的例子来显示前向概率的计算。 我们的观察集合是:

image-20191211111340320

我们的状态集合是:

image-20191211111356587

而观察序列和状态序列的长度为3.

初始状态分布为:

image-20191211111420238

状态转移概率分布矩阵为:

image-20191211111441386

观测状态概率矩阵为:

image-20191211111505163

球的颜色的观测序列:

image-20191211111524899


按照我们上一节的前向算法。首先计算时刻1三个状态的前向概率:

时刻1是红色球,

  • 隐藏状态是盒子1的概率为:

image-20191211111557445

  • 隐藏状态是盒子2的概率为:

image-20191211111615472

  • 隐藏状态是盒子3的概率为:

image-20191211111633922


现在我们可以开始递推了,首先递推时刻2三个状态的前向概率:

时刻2是白色球,

  • 隐藏状态是盒子1的概率为:

image-20191211111657376

  • 隐藏状态是盒子2的概率为:

image-20191211111727858

  • 隐藏状态是盒子3的概率为:

image-20191211111748653


继续递推,现在我们递推时刻3三个状态的前向概率:

时刻3是红色球,

  • 隐藏状态是盒子1的概率为:

image-20200207155502905

  • 隐藏状态是盒子2的概率为:

image-20200207155633244

  • 隐藏状态是盒子3的概率为:

image-20200207155724101

最终我们求出观测序列:O=红,白,红的概率为:

image-20200207155805682


4 用后向算法求HMM观测序列的概率

4.1 流程梳理

熟悉了用前向算法求HMM观测序列的概率,现在我们再来看看怎么用后向算法求HMM观测序列的概率。

后向算法和前向算法非常类似,都是用的动态规划,唯一的区别是选择的局部状态不同,后向算法用的是“后向概率”。

4.2 后向算法流程

在这里插入图片描述

5 小结

  • 前向算法求HMM观测序列

在这里插入图片描述

维特比算法解码隐藏状态序列


在本篇我们会讨论维特比算法解码隐藏状态序列,即给定模型和观测序列,求给定观测序列条件下,最可能出现的对应的隐藏状态序列。

HMM模型的解码问题最常用的算法是维特比算法,当然也有其他的算法可以求解这个问题。

同时维特比算法是一个通用的求序列最短路径的动态规划算法,也可以用于很多其他问题。

1 HMM最可能隐藏状态序列求解概述

在这里插入图片描述

2 维特比算法概述

维特比算法是一个通用的解码算法,是基于动态规划的求序列最短路径的方法。

既然是动态规划算法,那么就需要找到合适的局部状态,以及局部状态的递推公式。在HMM中,维特比算法定义了两个局部状态用于递推。

在这里插入图片描述

3 维特比算法流程总结

现在我们来总结下维特比算法的流程:

在这里插入图片描述

流程如下:

在这里插入图片描述

4 HMM维特比算法求解实例

下面我们仍然用盒子与球的例子来看看HMM维特比算法求解。 我们的观察集合是:

image-20191211153746752

我们的状态集合是:

image-20191211153802703

而观察序列和状态序列的长度为3.

初始状态分布为:

image-20191211153823665

状态转移概率分布矩阵为:

image-20191211153840457

观测状态概率矩阵为:

image-20191211153917435

球的颜色的观测序列:

image-20191211153935679

按照我们前面的维特比算法,首先需要得到三个隐藏状态在时刻1时对应的各自两个局部状态,此时观测状态为1:

image-20191211154001419

在这里插入图片描述

5 小结

  • 维特比算法流程总结:

在这里插入图片描述

鲍姆-韦尔奇算法简介


模型参数学习问题 —— 鲍姆-韦尔奇(Baum-Welch)算法(状态未知) ,

    在这里插入图片描述

    image-20191209171743726

    2 鲍姆-韦尔奇算法原理

    在这里插入图片描述


    在这里插入图片描述

    HMM模型API介绍


    1 API的安装:

    官网链接:https://hmmlearn.readthedocs.io/en/latest/

    pip3 install hmmlearn
    

    2 hmmlearn介绍

    hmmlearn实现了三种HMM模型类,按照观测状态是连续状态还是离散状态,可以分为两类。

    GaussianHMM和GMMHMM是连续观测状态的HMM模型,而MultinomialHMM是离散观测状态的模型,也是我们在HMM原理系列篇里面使用的模型。

    在这里主要介绍我们前面一直讲的关于离散状态的MultinomialHMM模型。

    对于MultinomialHMM的模型,使用比较简单,里面有几个常用的参数:

    • "startprob_"参数对应我们的隐藏状态初始分布Π\PiΠ,
    • "transmat_"对应我们的状态转移矩阵A,
    • "emissionprob_"对应我们的观测状态概率矩阵B。

    3 MultinomialHMM实例

    下面我们用我们在前面讲的关于球的那个例子使用MultinomialHMM跑一遍。

    import numpy as np
    from hmmlearn import hmm
    
    # 设定隐藏状态的集合
    states = ["box 1", "box 2", "box3"]
    n_states = len(states)
    
    # 设定观察状态的集合
    observations = ["red", "white"]
    n_observations = len(observations)
    
    # 设定初始状态分布
    start_probability = np.array([0.2, 0.4, 0.4])
    
    # 设定状态转移概率分布矩阵
    transition_probability = np.array([
      [0.5, 0.2, 0.3],
      [0.3, 0.5, 0.2],
      [0.2, 0.3, 0.5]
    ])
    
    # 设定观测状态概率矩阵
    emission_probability = np.array([
      [0.5, 0.5],
      [0.4, 0.6],
      [0.7, 0.3]
    ])
    
    # 设定模型参数
    model = hmm.MultinomialHMM(n_components=n_states)
    model.startprob_=start_probability  # 初始状态分布
    model.transmat_=transition_probability  # 状态转移概率分布矩阵
    model.emissionprob_=emission_probability  # 观测状态概率矩阵
    

    现在我们来跑一跑HMM问题三维特比算法的解码过程,使用和之前一样的观测序列来解码,代码如下:

    seen = np.array([[0,1,0]]).T  # 设定观测序列
    box = model.predict(seen)
    
    print("球的观测顺序为:\n", ", ".join(map(lambda x: observations[x], seen.flatten())))
    # 注意:需要使用flatten方法,把seen从二维变成一维
    print("最可能的隐藏状态序列为:\n"", ".join(map(lambda x: states[x], box)))
    

    我们再来看看求HMM问题一的观测序列的概率的问题,代码如下:

    print(model.score(seen))
    # 输出结果是:-2.03854530992
    

    要注意的是score函数返回的是以自然对数为底的对数概率值,我们在HMM问题一中手动计算的结果是未取对数的原始概率是0.13022。对比一下:

    import math
    
    math.exp(-2.038545309915233)
    # ln0.13022≈−2.0385
    # 输出结果是:0.13021800000000003
    
    评论 4
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值