楼梯有n阶台阶,上楼可以一步上1阶,2阶,3阶,编程序计算共有多少种不同的走法?

 

 

题目:楼梯有n阶台阶,上楼可以一步上1阶,2阶,3阶,编程序计算共有多少种不同的走法

 

对于这样一个问题,

思路:设n阶台阶的走法数为f(n)。如果只有1个台阶,走法有1种(一步上1个台阶),即f(1)=1;如果有2个台阶,走法有2种(一种是上1阶,再上1阶,另一种是一步上2阶),即f(2)=2;如果有3个台阶,走法有4种(一种每次1阶,共一种;另一种是2+1,共两种;第三种是3,共1种),即f(3)=4;

当有n个台阶(n>3)时,我们缩小问题规模,可以这样想:最后是一步上1个台阶的话,之前上了n-1个台阶,走法为f(n-1)种,而最后是一步上2个台阶的话,之前上了n-2个台阶,走法为f(n-2)种,故而f(n)=f(n-1)+f(n-2)。列出的递归方程为:f(1)=1;f(2)=2;

f(3)=4;

if(n==1)

return 1;

else if(n==2)

return 2;

else if(n==3)

return 4;

else

return  f(n-1)+f(n-2)+f(n-3),n>3

最后一步可能是从第n-1阶往上走1阶、从n-2阶往上走2阶,或从第n-3阶往上走3阶。因此,抵达最后一阶的走法,其实就是抵达这最后三阶的方式的总和。

解决方法1:按照递归的思想;但运算时间很长

 

int countWays (int n)
{if (n<=0)
   return 0;
if (n==1)
   return 1;
else if(n==2)
   return 2;
else if(n==3)
   return 4;
else
  {
  return countWays(n-1)+countWays(n-2)+countWays(n-3);
 }
}   

 

 
解决方法2:采用动态规划的思想 优化,

当一个问题可以分解成若干重复的子问题时,运用动态规划的思想:

只需要将子问题求解一次,以后再遇到,直接调用,所以我们新建一个数组用于存储子问题的结果:
 
将数组元素初始为零,若为新的子问题,我们求解,并把结果赋给对应的数组元素;这样当我们再次遇到相同的子问题,就可以直接调用了。
 
int countWaysDP(int n, dp[])
 { if (n<0) 
    return 0; 
   if (n==0) 
   return dp[n]; 
   if (dp[n]>0) 
   return dp[n]; //如果大于0 说明这个子问题已经计算过,直接调用数组 
   else { 
   dp[n]=countWays[n-1,dp]+countWays[n-2,dp]+countWays[n-3,dp]; //否则 还需计算该数组 
   return dp[n]; } 
}
 
接下来贴上实际运行代码吧;
 
#include<iostream> 
using namespace std; 
const int MAX=1000; 
int countWays(int n) {
   if (n<0) 
     return 0; 
   if (n==0) 
      return 1; 
    else { 
  return countWays(n-1)+countWays(n-2)+countWays(n-3); 
  } 
} 

int countWaysDP(int n, int dp[]) {
    if (n<0) 
    return 0; 
    if (n==0) 
    return 1; 
    if (dp[n]>0) 
    return dp[n]; //如果大于0 说明这个子问题已经计算过,直接调用数组 
    else { 
    dp[n]=countWaysDP(n-1,dp)+countWaysDP(n-2,dp)+countWaysDP(n-3,dp); //否则 还需计算该数组 
    return dp[n]; } 
} 
   int main() { 
    int m[MAX]={0}; 
     // int m[MAX]; 
   for(int i=1;i<10;i++) 
   cout<<countWaysDP(i,m)<<endl; 
  }


 

 

 

 

 

 

  • 22
    点赞
  • 66
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
### 回答1: 这是一个经典的动态规划问题。假设f(n)表示上n楼梯不同方法数,那么f(n)可以由f(n-1)和f(n-2)转移而来,因为上n楼梯可以从n-1楼梯一步上来,也可以从n-2楼梯两步上来。因此,f(n) = f(n-1) + f(n-2)。 初始条件是f(1) = 1,f(2) = 2,因为上1楼梯只有一方法,上2楼梯有两方法。 下面是Python代码实现: def climbStairs(n: int) -> int: if n == 1: return 1 if n == 2: return 2 f1, f2 = 1, 2 for i in range(3, n+1): f3 = f1 + f2 f1, f2 = f2, f3 return f3 print(climbStairs(3)) # 输3,因为有3方法:1+1+1,1+2,2+1 print(climbStairs(4)) # 输5,因为有5方法:1+1+1+1,1+1+2,1+2+1,2+1+1,2+2 print(climbStairs(5)) # 输8,因为有8方法:1+1+1+1+1,1+1+1+2,1+1+2+1,1+2+1+1,2+1+1+1,1+2+2,2+1+2,2+2+1 ### 回答2: 这个问题可以用动态规划的方法来解决。 我们定义一个数组dp,其中dp[i]表示上到第i台阶不同方法数。根据题目的要求,当i<=2时,dp[i]的值为i。当i>2时,dp[i]的值为dp[i-1]+dp[i-2],即到达第i台阶不同方法数可以由到达第i-1台阶和到达第i-2台阶的方法数相加得到。 最终,dp[n]就是我们要求的上楼梯的不同方法总数。 以下是用Python语言编写的程序示例: ``` def climbStairs(n): if n <= 2: return n dp = [0] * (n+1) dp[1] = 1 dp[2] = 2 for i in range(3, n+1): dp[i] = dp[i-1] + dp[i-2] return dp[n] ``` 这个程序的时间复杂度是O(n),空间复杂度也是O(n)。这意味着,当n非常大时,程序的执行时间和内存占用也会变得非常大。如果需要处理更大的n值,我们可以考虑使用空间复杂度为O(1)的优化算法,例如滚动数组技巧。 ### 回答3: 楼梯上有n台阶上楼可以一步上1,也可以一步上2。我们可以设f(n)为上n楼梯不同方法数。 当n=1时,只有一方法,即一次走1个台阶,故f(1)=1。 当n=2时,有两方法,一次走两个或者分两步走,故f(2)=2。 当n=3时,可以一次上1个或2个台阶,所以可以由f(1)和f(2)转移而来,即f(3) = f(2) + f(1) = 3。 当n=4时,可以一次上1个或2个台阶,所以可以由f(2)和f(3)转移而来,即f(4) = f(3) + f(2) = 5。 …… 依此类推,可以得到递推公式: f(n) = f(n-1) + f(n-2) 其中f(1)=1,f(2)=2。可以使用动态规划的方法,从f(1)和f(2)开始计算直到f(n)。最后得到的f(n)即为上n台阶不同方法数。 下面是Python代码实现: def climbStairs(n: int) -> int: if n == 1: return 1 if n == 2: return 2 dp = [0] * n dp[0] = 1 dp[1] = 2 for i in range(2, n): dp[i] = dp[i-1] + dp[i-2] return dp[n-1] 其中,dp为动态规划数组。首先将dp[0]和dp[1]初始化为1和2,然后从2开始循环,每次将dp[i]赋值为dp[i-1]和dp[i-2]的和。最后返回dp[n-1]即为所求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值