TensorFlow 2.0 mnist手写数字识别(CNN卷积神经网络)

本文是TensorFlow 2.0入门教程的第五篇,介绍如何使用CNN提升MNIST手写数字识别的准确性。通过Keras构建模型,详细讲解CNN的工作原理和代码实现,最终模型达到约99%的准确率。文章对比了TensorFlow 1.0和2.0的区别,并提供了数据集预处理、模型训练和图片预测的步骤。
摘要由CSDN通过智能技术生成

TensorFlow 2.0 (五) - mnist手写数字识别(CNN卷积神经网络)

源代码/数据集已上传到 Github - tensorflow-tutorial-samples

卷积神经网络gif动图

大白话讲解卷积神经网络工作原理,推荐一个bilibili的讲卷积神经网络的视频,up主从youtube搬运过来,用中文讲了一遍。

这篇文章是 TensorFlow 2.0 Tutorial 入门教程的第五篇文章,介绍如何使用卷积神经网络(Convolutional Neural Network, CNN)来提高mnist手写数字识别的准确性。之前使用了最简单的784x10的神经网络,达到了 0.91 的正确性,而这篇文章在使用了卷积神经网络后,正确性达到了0.99

卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。

卷积神经网络由一个或多个卷积层和顶端的全连通层(对应经典的神经网络)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网络能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网络在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网络,卷积神经网络需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。

——维基百科

1. 安装TensorFlow 2.0

Google与2019年3月发布了TensorFlow 2.0,TensorFlow 2.0 清理了废弃的API,通过减少重复来简化API,并且通过Keras能够轻松地构建模型,从这篇文章开始,教程示例采用TensorFlow 2.0版本。

1
pip install tensorflow==2.0.0-beta0

或者在这里下载whl包安装:https://pypi.tuna.tsinghua.edu.cn/simple/tensorflow/

2. 代码目录结构

1
2
3
4
5
6
7
8
9
10
11
12
13
data_set_tf2/  # TensorFlow 2.0的mnist数据集
    |--mnist.npz  
test_images/   # 预测所用的图片
    |--0.png
    |--1.png
    |--4.png
v4_cnn/
    |--ckpt/   # 模型保存的位置
        |--checkpoint
        |--cp-0005.ckpt.data-00000-of-00001
        |--cp-0005.ckpt.index
    |--predict.py  # 预测代码
    |--train.py    # 训练代码

3. CNN模型代码(train.py)

模型定义的前半部分主要使用Keras.layers提供的Conv2D<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青年夏日科技

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值