TensorFlow 2.0 (五) - mnist手写数字识别(CNN卷积神经网络)
源代码/数据集已上传到 Github - tensorflow-tutorial-samples
大白话讲解卷积神经网络工作原理,推荐一个bilibili的讲卷积神经网络的视频,up主从youtube搬运过来,用中文讲了一遍。
这篇文章是 TensorFlow 2.0 Tutorial 入门教程的第五篇文章,介绍如何使用卷积神经网络(Convolutional Neural Network, CNN)来提高mnist手写数字识别的准确性。之前使用了最简单的784x10的神经网络,达到了 0.91
的正确性,而这篇文章在使用了卷积神经网络后,正确性达到了0.99
卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现。
卷积神经网络由一个或多个卷积层和顶端的全连通层(对应经典的神经网络)组成,同时也包括关联权重和池化层(pooling layer)。这一结构使得卷积神经网络能够利用输入数据的二维结构。与其他深度学习结构相比,卷积神经网络在图像和语音识别方面能够给出更好的结果。这一模型也可以使用反向传播算法进行训练。相比较其他深度、前馈神经网络,卷积神经网络需要考量的参数更少,使之成为一种颇具吸引力的深度学习结构。
——维基百科
1. 安装TensorFlow 2.0
Google与2019年3月发布了TensorFlow 2.0,TensorFlow 2.0 清理了废弃的API,通过减少重复来简化API,并且通过Keras能够轻松地构建模型,从这篇文章开始,教程示例采用TensorFlow 2.0
版本。
1 |
pip install tensorflow==2.0.0-beta0 |
或者在这里下载whl包安装:https://pypi.tuna.tsinghua.edu.cn/simple/tensorflow/
2. 代码目录结构
1 2 3 4 5 6 7 8 9 10 11 12 13 |
data_set_tf2/ # TensorFlow 2.0的mnist数据集 |--mnist.npz test_images/ # 预测所用的图片 |--0.png |--1.png |--4.png v4_cnn/ |--ckpt/ # 模型保存的位置 |--checkpoint |--cp-0005.ckpt.data-00000-of-00001 |--cp-0005.ckpt.index |--predict.py # 预测代码 |--train.py # 训练代码 |
3. CNN模型代码(train.py)
模型定义的前半部分主要使用Keras.layers提供的Conv2D<