声纹识别算法的技术指标

原文链接
其他推荐链接:准确率、精确率、召回率、F1值、ROC/AUC整理笔记
1. 直接复制的原文,非常感谢原作者!

好的链接推荐:
声纹识别综述
声纹识别开源工具

声纹识别算法的技术指标

声纹识别在算法层面可通过如下基本的技术指标来判断其性能,除此之外还有其它的一些指标,如:信道鲁棒性、时变鲁棒性、假冒攻击鲁棒性、群体普适性等指标,这部分后续于详细展开讲解。

  • 错误拒绝率(False Rejection Rate,
    FRR):分类问题中,若两个样本为同类(同一个人),却被系统误认为异类(非同一个人),则为错误拒绝案例。错误拒绝率为错误拒绝案例在所有同类匹配案例的比例。

  • 错误接受率(False Acceptance Rate, FAR)
    :分类问题中,若两个样本为异类(非同一个人),却被系统误认为同类(同一个人),则为错误接受案例。错误接受率为错误接受案例在所有异类匹配案例的比例。

  • 等错误率(Equal Error Rate,EER):调整阈值,使得误拒绝率(False Rejection
    Rate,FRR)等于误接受率(False Acceptance Rate,FAR),此时的FAR与FRR的值称为等错误率。

  • 准确率(Accuracy,ACC):调整阈值,使得FAR+FRR最小,1减去这个值即为识别准确率,即ACC=1 – min(FAR+FRR)

  • 速度:(提取速度:提取声纹速度与音频时长有关、验证比对速度):Real Time Factor 实时比(衡量提取时间跟音频时长的关系,比如:1秒能够处理80s的音频,那么实时比就是1:80)。验证比对速度是指平均每秒钟能进行的声纹比对次数。

  • ROC曲线:描述FAR与FRR之间相互变化关系的曲线,X轴为FAR的值,Y轴为FRR的值。从左到右,当阈值增长期间,每一个时刻都有一对FAR和FRR的值,将这些值在图上描点连成一条曲线,就是ROC曲线。

  • 阈值:在接受/拒绝二元分类系统中,通常会设定一个阈值,分数超过该值时才做出接受决定。调节阈值可以根据业务需求平衡FAR与FRR。
    当设定高阈值时,系统做出接受决定的得分要求较为严格,FAR降低,FRR升高;当设定低阈值时,系统做出接受决定的得分要求较为宽松,FAR升高,FRR降低。在不同应用场景下,调整不同的阈值,则可在安全性和方便性间平平衡,如下图所示:

错误接受率

影响声纹识别水平的因素

训练数据和算法是影响声纹识别水平的两个重要因素,在应用落地过程中,还会受很多因素的影响。

  • 声源采样率:

    人类语音的频段集中于50Hz ~ 8KHz之间,尤其在4KHz以下频段

    离散信号覆盖频段为信号采样率的一半(奈奎斯特采样定理)。

    采样率越高,信息量越大。

    常用采样率:8KHz (即0 ~ 4KHz频段),16KHz(即0 ~ 8KHz频段)。

  • 信噪比(SNR): 信噪比衡量一段音频中语音信号与噪声的能量比,即语音的干净程度:

    15dB以上(基本干净)

    6dB(嘈杂)

    0dB(非常吵)

  • 信道: 不同的采集设备,以及通信过程会引入不同的失真。

    声纹识别算法与模型需要覆盖尽可能多的信道。

    手机麦克风、桌面麦克风、固话、移动通信(CDMA, TD-LTE等)、微信……

  • 语音时长: 语音时长(包括注册语音条数)会影响声纹识别的精度。

    有效语音时长越长,算法得到的数据越多,精度也会越高。

    短语音(1~3s)

    长语音(20s+)

  • 文本内容: 通俗地说,声纹识别系统通过比对两段语音的说话人在相同音素上的发声来判断是否为同一个人。

    固定文本:注册与验证内容相同

    半固定文本:内容一样但顺序不同;文本属于固定集合

    自由文本

### STM32平台上声纹识别算法的实现方案 #### 背景介绍 声纹识别是一种生物特征识别技术,通过对人类声音的独特特性进行提取和匹配来验证身份。在嵌入式系统中,尤其是像STM32这样的微控制器上实现声纹识别具有一定的挑战性,因为这通常涉及复杂的信号处理和模式识别算法。 #### 技术基础 为了在STM32平台上实现声纹识别,可以借鉴现有的语音识别技术和音频信号处理经验。例如,在引用[1]中的`stm32-speech-recognition`项目提供了基于STM32的孤立词语音识别解决方案[^1],而引用[2]则进一步介绍了如何使用STM32与语音识别传感器配合工作并编写相应的代码[^2]。这些资源可以帮助理解基本的声音采集、预处理以及初步的特征提取过程。 然而,声纹识别相较于普通的语音识别更加复杂,因为它不仅需要区分不同的单词或命令,还需要辨别说话人的独特嗓音特质。因此,除了上述提到的技术外,还需引入更高级别的信号分析手段,比如快速傅里叶变换(FFT)。正如引用[3]所展示的内容那样,FFT被广泛应用于音频信号频率成分分解当中,这对于后续构建个性化的声学模型至关重要[^3]。 #### 实现步骤概述 以下是可能适用于STM32平台的一个简化版声纹识别流程: 1. **数据收集**: 使用麦克风阵列或其他录音设备获取目标用户的多组样本发音记录; 2. **前处理阶段**: - 对原始音频文件执行降噪操作去除背景干扰因素影响。 - 应用滤波器调整带宽范围至适合人耳听觉敏感度区间内。 3. **特征抽取部分** 利用MFCC(Mel-Frequency Cepstral Coefficients)或者LPCC(Liner Prediction Coding Coefficients),从经过清理后的数字化语音片段里面挖掘出能代表个人发声习惯的关键参数集合 4. **训练分类器环节** 将前面得到的结果输入到机器学习框架下的监督型算法之中完成建模任务, 如支持向量机(SVM), K近邻(KNN) 或者神经网络等结构形式均可考虑选用. 5. **测试评估性能指标** 验证最终产出出来的预测函数是否具备足够的准确性水平满足实际应用场景需求. 下面给出一段伪代码用于演示整个逻辑架构: ```c #include "stm32fxxx_hal.h" void AudioCapture(void){ // Implement audio capture function here... } float* PreprocessAudio(float *rawData){ // Apply noise reduction and filtering techniques on raw data... return processedData; } float* ExtractFeatures(float *processedSignal){ // Use MFCC or LPCC methods to extract features from signal... return featureVector; } int ClassifySpeaker(float *featureVectors[], int numSamples){ // Train classifier with given samples then classify new input based on model... return predictedLabel; } ``` 以上仅为概念性的指导方向,并未深入探讨具体细节问题解决办法。开发者应当依据自身项目的特殊要求灵活调整设计方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值