- 博客(31)
- 资源 (2)
- 收藏
- 关注
原创 pandas 读csv时为了将第一列作为行名字
pandas 读csv时为了将第一列作为行名字只需要在 加上 index _col = 0index_col=0
2019-04-02 19:10:09 11986
原创 Java ee 链接mysql 数据库完整步骤
Java ee 链接mysql 数据库完整步骤 mac 版也可以 。我们需要先下载Mysql的驱动包 mysql的驱动包下载地址然后将它拖到这里,再建立路径 弄好之后,完成这个之后我们打开MySql Workbench,建立一个数据库这里是 n
2017-07-11 16:43:56 15900
原创 java 输入输出流(文件操作)及序列化
java实训的第四天就学到了流的各种操作和类的序列化反序列化,对于没认真学过的人进度有些快。好了废话不多说了。流按处理数据类型不同划分为字符流,字节流。二者应用方面很容易区分,前者处理文本文件,后者处理各种文件。 举一个例子:import java.io.FileOutputStream;import java.io.IOException;import java.io.OutputStr
2017-07-11 14:01:44 619
原创 ArrayList 集合详细使用方法
今天实训主要收获就是会使用了java的ArrayList集合及其方法。毕竟多了很多方法,比如增加,索引删除等。ArrayList<Object> dogs = new ArrayList<Object>();
2017-07-10 15:59:17 1665
原创 JAVA, Eclipse 及Mysql 环境配置 for Mac
MySQL ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: NO)解决办法,JAVA, Eclipse, 及Mysql 完整配置办法。。
2017-07-09 13:33:54 891
原创 利用Knn, 决策树, 高斯朴树贝叶斯,对行为进行预测
import numpy as npimport pandas as pdfrom sklearn.preprocessing import Imputer #预处理函数 处理缺失值from sklearn.model_selection import train_test_split #自动分成训练集和测试集from sklearn.metrics import classificati
2017-06-01 16:10:20 1059
原创 利用KMeans算法对图片进行分割
from sklearn.cluster import KMeansimport numpy as npimport PIL.Image as imagedef loadData(filePath): f = open(filePath, 'rb') data = [] img = image.open(f) #PIL.Image.open(图片路径) m, n
2017-05-31 11:42:28 2940
原创 《一斛珠·元夜月蚀》
《一斛珠·元夜月蚀》 纳兰性德 星球映彻,一夜微褪梅梢雪。 紫姑待话经年别,窃药心灰,慵把菱花揭。 踏歌才起清钲歇,扇纨仍似秋期洁。 天公毕竟风流绝,教看蛾眉,特放些时缺。【注释】: 元夜:元宵。 星球:一团团的烟火。 紫姑:传说中的厕神,又名子姑。传说紫姑为李景妾,因为大妇所妒,常被役为秽事,死后为神。 窃药:比喻求仙。神话传说中的后羿在西王母处得到不死神药,被他的
2017-05-30 23:30:53 2035
原创 交叉验证 cross_validation
from sklearn.datasets import load_boston, load_irisfrom sklearn.linear_model import LinearRegressionfrom sklearn.neighbors import KNeighborsClassifierimport numpy as npfrom sklearn import preproces
2017-05-23 21:34:00 425
原创 sklern使用之通用模版(以iris为数据集,knn,PCA)
import matplotlib.pyplot as pltfrom sklearn.decomposition import PCAfrom sklearn.datasets import load_irisfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn.cross_validation import trai
2017-05-23 14:48:20 763
原创 聚类(2)--KMeans算法
K-means聚类算法也称作K均值算法。以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,簇间相似度较低,随机选择k个点作为初始聚类中心对于剩下的点,根据其与聚类中心的距离,将其归入最近的簇对每个簇,计算所有点的均值作为新的聚类中心重复2,3直到聚类中心不再发生改变 import numpy as npfrom sklearn.cluster import KMeansimpor
2017-05-23 11:33:44 775
原创 聚类(1)----DBSCAN实例
DBSCAN算法是一种基于密度聚类算法: - 聚类的时候不需要预先指定簇的个数 - 最终簇的个数不一定DBSCAN算法将数据点分为三类: - 核心点:在半斤EPS内含有超过MinPts数目的点 - 边界点:在半斤EPS内点的数量小于MinPts,但是落在核心点的领域内 算法流程: 1. 对所有点计算其领域Eps=distance内的点的集合 2. 集合内的点个数超过MinP
2017-05-22 23:22:26 4075 1
原创 Python求矩阵特征值及特征向量和实现对角化矩阵简化矩阵n次方运算
import numpy as npa = np.matrix([[0, 1, 0, 1, 0], [1, 0, 1, 0 ,0],[0, 1, 0, 0, 1], [1, 0, 0, 0, 1],[0,0, 1, 1,0]])for i in range(20): if i == 0: t = a*a continue t = t * a#t为特征
2017-05-17 15:37:08 3855
原创 igraph 分析社交网络
from igraph import Graph as iGraphdef loadData(filename): dataMat = [] with open(filename) as f: for i in f.readlines(): t = i.strip().split(',') u, v = [k for k
2017-05-13 20:25:53 1151
原创 拉格朗日插值法
python代码实现插值拟合 1/(1+25x^2) import matplotlib.pyplot as pltimport numpy as npdef f(x): return 1/(1+x**2)def L(x, X, Y1): Ln = 0.0000 t = 0 for j in X: Molecule = 1.0000
2017-05-02 18:50:54 466
原创 紧密中心性(closeness centrality)
closeness centrality:某个节点到达其他节点的难易程度,也就是到其他所有结点距离的平均值的倒数。公式:例题及实现 :from igraph import Graph as IGraphf = open('/Users/tangweize/Desktop/net.data')edges = []for line in f.readlines():
2017-04-15 15:26:58 26484 1
原创 pagerank算法
pagernk是对网页排名的算法,计算每一个网页的PageRank值,然后根据这个值(概率)的大小对网页的重要性进行排序。思想:被大量高质量网页引用(链接)的网页也是高质量的网页。比如网页Y被X1,X2,X3,X4四个网页所链接,且这四个网页的权重分别为0.001,0.01, 0.02, 0.04,则网页Y的rank值为 0.01 + 0.02 + 0.03 + 0.04 = 0.071最简单的pa
2017-04-12 21:28:22 1058
原创 pandas库教程(1)
# -*- coding: utf-8 -*- from pandas import Seriesprint '用数组生成Series'obj = Series([4, 7, -5, 3])print objprint obj.valuesprint obj.indexprintprint '指定Series的index'obj2 = Series([4, 7, -5, 3], inde
2017-04-12 12:35:01 607
转载 二叉树后序非递归遍历
前序、中序、后序的非递归遍历中,要数后序最为麻烦,如果只在栈中保留指向结点的指针,那是不够的,必须有一些额外的信息存放在栈中。 方法有很多,这里只举一种,先定义栈结点的数据结构 typedef struct{Node * p; int rvisited;}SNode //Node 是二叉树的结点结构,rvisited==1代表p所指向的结点的右结点已被访问过。lastOrderTraverse(
2017-04-10 09:57:49 433
原创 python 不换行输出
print默认换行输出, 今天看人家代码偶然发现一个不换行,且多重输出可以覆盖原输出的方法。print("/r已完成 {:.2f}%".format(i/100000), end = "") end = “”输出没有换行, /r 即是在原输出地方覆盖完整代码如下for i in range(1000000): print("/r已完成 {:.2f}%".form
2017-04-09 18:21:03 3735
原创 动态规划粗浅理解及LCS思路
动态规划 常用方法是递归,递归的本质是原问题拆解成子问题 原问题(N)->子问题(N-1)->原问题(N) 动态规划两个性质 1:最优子结构 子问题的最优决策可导出原问题最优决策 N-1 可以推出N 无后效性 2:重叠子问题 去除冗余 空间换时间套路 关键词:
2017-04-08 18:07:57 394
原创 网页解析库 Beautifull Soup 常用方法
from bs4 import BeautifulSoupsoup = BeautifulSoup(demo,"html.parser")#demo是已经提取出来的html文档# 获取soup里面的a标签内容:print(soup.a)#获取a标签的父亲标签的名字print(soup.a.parent.name)#获取标签中的属性(attribute)由于他是字典类型,我们可以输入对应
2017-04-06 18:07:21 515
原创 networkx库中常用网络演化模型
networkx在绘制网络图形提供了如何布局的方法,常用的有以下几种pos = nx.spectral_layout(G) pos = nx.shell_layout(G) pos = nx.circular_layout(G) pos = nx.spring_layout(G) pos = nx.random_layout(G) #如果需要获取图对应的点下标,则只需要pos[点的名
2017-04-06 15:47:16 1926 1
原创 networkx库常用图的算法
先是简单的建立一个图import networkx as nxG = nx.Graph()G.add_edges_from([(1,2), (1,3)])G.add_node("vz")求连通子图并把它们输出print(list(nx.connected_components(G))#[{1, 2, 3, 4}, {'vz'}]求各节点的度 结果输出是字典类型,所以可以指定点的名称输出对应
2017-04-06 14:55:34 2174
原创 富人俱乐部的度量
网络中少量的节点具有大量的边,这些节点成为富节点;他们之间也相互连接,构成富人俱乐部(rich-club)。 我们用富人俱乐部连通性 µ(r/N) 来刻画。他表示网络中的前r个度最大的节点之间实际存在边数L与这r个节点之间最大可能存在的边数r(r-1)/2 比值,即
2017-04-05 20:50:51 2588
原创 Python 以指定宽度格式化输出(format)
当对一组数据输出的时候,我们有时需要输出以指定宽度,来使数据更清晰。这时我们可以用format来进行约束。mat = "{:20}\t{:28}\t{:32}"print(mat.format("占4个长度","占8个长度", "占12长度"))#如果需要居中输出在宽度前面加一个^mat = "{:^20}\t{:^28}\t{:^32}"print(mat.format("占4个长度",
2017-04-05 00:02:55 58615 3
原创 re库正则表达式常用操作符
. 表示任何单个字符 [ ] 对单个字符给出取值范围 [abc] 表示a,b,c一个[a-z]表示a到z单个字符 [^ ] 对单个字符给出排除范围 * 对前一个字符0到若干次扩展 + 对前一个字符1到若干次扩展 ? 对前一个字符0到1次扩展 | (或者
2017-04-02 15:20:05 458
原创 Python re库 非贪婪匹配(正则表达式库)
re库中默认采用贪婪匹配,即同一个字符串多处符合条件的话,输出最长的那个子串。import rer = re.search(r'PY.*N','PYTHONFTTN')print(r.group(0))如果需要最小输出匹配import rer = re.search(r'PY.*?N','PYTHONFTTN')print(r.group(0))最小匹配操作符 ? 常用的是:
2017-04-02 14:52:54 919
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人