numpy修炼之路
修炼之路
主要研究领域包括图像分类、目标检测、OCR、人脸识别等,搞过跨平台的深度学习模型的部署解决方案,设计过分布式的深度学习模型服务架构。
展开
-
numpy多维数组元素筛选
使用numpy筛选数组中的元素原创 2023-02-01 14:23:28 · 1696 阅读 · 0 评论 -
找出数组中非重复元素的下标
https://stackoverflow.com/questions/432112/is-there-a-numpy-function-to-return-the-first-index-of-something-in-an-array原创 2021-06-18 22:24:09 · 614 阅读 · 1 评论 -
将numpy array转换为bytes
问题分析需要将图片的numpy的array数据转换为bytes,转换之后的bytes数据要等价于open(file,"rb")。在使用numpy的tobytes(等价于tostring)方法发现得到的bytes数据并不等价于open(file,"rb")数据,需要对array数据进行相同的图片格式编码之后,再使用tobytes才行。代码import cv2img_path = "img/test.jpg"#打开图片文件获取二进制数据with open(img_path,"rb") as原创 2020-07-08 16:42:09 · 19649 阅读 · 4 评论 -
cupy利用GPU来加速你的numpy操作
导读numpy是python中常用的一个矩阵运算库,而且numpy的底层都是采用c实现的,所以执行效率和速度也是很快的,但numpy是利用CPU来进行矩阵运算的,如果遇到大数据的矩阵运算,你会发现numpy真的很慢。那有没有什么办法来加速呢?想到大矩阵的运算肯定会想多使用GPU来计算,就让我们来看看numpy的GPU版本cupy。环境要求操作系统官方推荐安装环境是在linux操作系统下安装:Ubuntu 16.04 / 18.04 LTS (64-bit)CentOS 7 (64-bit)原创 2020-07-04 12:16:50 · 16753 阅读 · 2 评论 -
Python快速找到列表中所有重复的元素
index方法为了能够找到元素在列表中的位置,我们通常会使用list.index()方法来元素的下标,但是这种方法有一个弊端,就是当列表中出现重复元素的时候,index方法只会返回第一个元素的位置,代码如下a = ["a","b","c","a","d","a"]print(a.index("a"))#输出为0通过上面的代码可以发现,index方法的返回值是一个整数,不存在是-1,...原创 2020-01-08 10:15:57 · 31752 阅读 · 2 评论 -
numpy报ValueError: could not broadcast input array from shape
问题描述在使用numpy将list转为array的时候报错代码a = np.array([[1,2],[3,4]])b = np.array([[5,6,7],[8,9,10]])c = [a,b]d = np.array(c)错误信息描述ValueError: could not broadcast input array from shape (2,2) into ...原创 2019-12-11 10:28:33 · 112498 阅读 · 1 评论 -
numpy快速生成one hot编码
前言在构建分类算法的时候,标签通常都要求是one_hot编码,实际上标签可能都是整数,所以我们都需要将整数转成one_hot编码,本篇文章主要介绍如何利用numpy快速将整数转成one_hot编码。代码示例在使用numpy生成one hot编码的时候,需要使用numpy中的一个eye函数,先简单介绍一下这个函数的功能。函数:np.eye(N, M=None, k=0, dtype=floa...原创 2019-01-19 15:45:32 · 43850 阅读 · 8 评论 -
Python快速找到两个数组相等元素和不相等元素的下标位置
找到两个两个数组下标相等和不相等的下标位置,主要借助Python的第三方库numpy来实现,numpy作为Python的第三方库还是非常高效的,而且内置了许多的函数,方便使用。import numpy as npif __name__ == "__main__": a = np.array([1,2,3,4,5]) b = np.array([1,2,3,3,4]) ...原创 2018-12-02 18:20:31 · 26019 阅读 · 1 评论 -
numpy的ogrid详细介绍
ogrid函数官网介绍ogrid函数作为产生numpy数组与numpy的arange函数功能有点类似,不同的是:1、arange函数产生的是一维数组,而ogrid函数产生的是二维数组2、arange函数产生的是一个数组,而ogrid函数产生的是二个数组3、ogrid函数产生的数组,第一个数组是以纵向产生的,即数组第二维的大小始终为1。第二个数组是以横向产生的,即数组第一维的大小始终...原创 2018-08-02 20:55:25 · 23407 阅读 · 3 评论 -
numpy的数据类型
numpy的数据类型主要包括整数、浮点数、复数、布尔值、字符串、python对象类型,如下图所示1、使用dtype指定创建数组的数据类型 #默认是浮点数是float64 arr9 = np.array([1.,2.,3.],dtype=np.float32) print(arr9.dtype) #float32 #通过类型代码指定 arr9 = np....原创 2018-05-22 22:30:31 · 11853 阅读 · 0 评论 -
使用numpy来创建数组
1、通过python列表来创建数组import numpy as npif __name__ == "__main__": a = [1,2,3] arr1 = np.array(a) print(arr1) # [1 2 3] b = [[1,2,3],[4,5,6]] arr2 = np.array(b) prin...原创 2018-05-22 22:08:59 · 14818 阅读 · 0 评论 -
numpy中的meshgrid函数
numpy官方文档meshgrid函数帮助文档https://docs.scipy.org/doc/numpy/reference/generated/numpy.meshgrid.html meshgrid(*xi, **kwargs)功能:从一个坐标向量中返回一个坐标矩阵 参数:x1,x2...,xn:数组,一维的数组代表网格的坐标。indexing:{'xy',...原创 2017-12-17 20:50:46 · 43533 阅读 · 5 评论